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Introduction 
Successful population screening testing of SARS-CoV-2 
depends on understanding both the dynamics of spread 
between individuals and the dynamics of the virus within the 
human body. Critically, the ability of SARS-CoV-2 to spread 
from individuals who are pre-symptomatic, symptomatic, or 
essentially asymptomatic (1–3) means that diagnosis and 
isolation based on symptoms alone will be unable to prevent 
ongoing spread (4, 5). As a consequence, the use of population 
screening testing to identify infectious individuals presents 
one possible means to break enough transmission chains to 
suppress the ongoing pandemic and reopen societies, with or 
without a vaccine. 

The reliance on testing as a means to safely reopen socie-
ties has placed a microscope on the analytical sensitivity of 
virus assays, with a gold-standard of quantitative real-time 
polymerase chain reaction (qPCR). These assays have analyt-
ical limits of detection that are usually within around 103 viral 
RNA copies per ml (cp/ml) (6). However, qPCR remains ex-
pensive and as a laboratory-based assay often have sample-
to-result times of 24-48 hours. New developments in SARS-
CoV-2 diagnostics have the potential to reduce cost signifi-
cantly, allowing for expanded testing or greater frequency of 
testing and can reduce turnaround time to minutes (7–9). 
These assays however largely do not meet the gold standard 

for analytical sensitivity, which has encumbered the wide-
spread use of these assays (10). 

Three features of the viral increase, infectivity, and de-
cline during SARS-CoV-2 infection led us to hypothesize that 
there might be minimal differences in effective screening reg-
imens using viral detection tests of different sensitivities, 
such as RT-qPCR with a limit of detection (LOD) at 103 cp/ml 
(6) compared to often cheaper or faster assays with higher 
limits of detection (i.e., around 105 cp/ml (7–9)) such as point-
of-care nucleic acid LAMP and rapid antigen tests (Fig. 1A). 
First, since filtered samples collected from patients display-
ing less than 106 N or E RNA cp/ml contain minimal or no 
measurable infectious virus (11–13), either class of test should 
detect individuals who are currently infectious. The absence 
of infectious particles at viral RNA concentrations < 106 
cp/ml is likely due to (i) the fact that the nucleocapsid and 
envelope RNAs are also present in abundant subgenomic 
mRNAs, leading to overestimation of the number of actual 
viral genomes by ∼100-1000X (14), (ii) technical artifacts of 
RT-PCR at Ct values > 35 due to limited template (15, 16), and 
(iii) the production of non-infectious viral particles as is com-
monly seen with a variety of RNA viruses (17). Second, during 
the exponential growth of the virus, the time difference be-
tween 103 and 105 cp/ml is short, allowing only a limited win-
dow in which only the more sensitive test could diagnose 
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individuals. For qPCR, this corresponds to the time required 
during viral growth to go from Ct values of 40 to ∼34. While 
this time window for SARS-CoV-2 is not yet rigorously de-
fined (18), for other respiratory viruses such as influenza, and 
in ferret models of SARS-CoV-2 transmission, it is on the or-
der of a day (19, 20). Finally, high-sensitivity screening tests, 
when applied during the viral decline accompanying recov-
ery, are unlikely to substantially impact transmission because 
such individuals detected have low, if any, infectiousness (14). 
Indeed, a recent review by Cevik et al. (18) notes that no study 
to date has successfully cultured live virus more than 9 days 
after the onset of symptoms. 
 
Results 
Impact of repeated population screening on individuals 
To examine how repeated population screening would reduce 
the average infectiousness of individuals, we first modeled the 
viral loads and infectiousness curves of 10,000 simulated indi-
viduals using the predicted viral trajectories of SARS-CoV-2 in-
fections based on key features of latency, growth, peak, and 
decline identified in the literature (Fig. 1A; see Methods). Ac-
counting for these within-host viral kinetics, we calculated 
what percentage of their total infectiousness would be re-
moved by screening and isolation (Fig. 1B) with tests at LOD 
of 103 and 105, and at different testing frequencies. Here, infec-
tiousness was taken to be proportional to the logarithm of viral 
load in excess of 106 cp/ml (with alternative assumptions ad-
dressed in sensitivity analyses; see Supplemental Materials), 
consistent with the observation that presymptomatic patients 
are most infectious just prior to the onset of symptoms (21), 
and evidence that the efficiency of viral transmission coincides 
with peak viral loads, which was also identified during the re-
lated 2003 SARS outbreak (22, 23). We considered that 35% of 
patients would undergo symptomatic isolation within three 
days of their peak viral load if they had not been tested and 
isolated first, and 65% would have sufficiently mild or no 
symptoms such that they would not isolate unless they were 
detected by testing. Based on recent results, we modeled 
asymptomatic and symptomatic infections as having the same 
initial viral loads (1, 24–26), but with faster clearance among 
asymptomatics (24, 26–29) (see Methods). This analysis 
demonstrated that there was little difference in averting infec-
tiousness between the two classes of test. Dramatic reductions 
in total infectiousness of the individuals were observed by test-
ing daily or every third day, 62-66% reduction when testing 
weekly, and 45-47% under biweekly testing (Fig. 1C). Because 
viral loads and infectiousness vary across individuals, we also 
analyzed the impact of different screening regimens on the dis-
tribution of individuals’ infectiousness, revealing that more 
sporadic testing leads to an increased likelihood that individu-
als will test positive after they are no longer infectious or be 
missed by testing entirely (Fig. 1D). 

Impact of repeated screening on a population 
Above, we assumed that each infection was independent. To 
investigate the effects of population screening strategies at 
the population level, we used simulations to monitor whether 
epidemics were contained or became uncontrolled, while var-
ying the frequencies at which the test was administered, 
ranging from daily testing to testing every 14 days, and con-
sidering tests with LOD of 103 and 105, analogous to RT-qPCR 
and RT-LAMP / rapid antigen tests, respectively. We inte-
grated individual viral load trajectories into two different ep-
idemiological models to ensure that important observations 
were independent of the specific modeling approach. The 
first model is a simple fully-mixed model representing a pop-
ulation of 20,000, similar to a large university setting, with a 
constant rate of external infection approximately equal to one 
new import per day. The second model is a previously de-
scribed agent-based model with both within-household and 
age-stratified contact structure based on census microdata in 
a city representative of New York City (30), which we initial-
ized with 100 cases without additional external infections. In-
dividual viral loads were simulated for each infection, and 
individuals who received a positive test result were isolated, 
but contact tracing and monitoring was not included to more 
conservatively estimate the impacts of screening alone (31, 
32). Model details and parameters are fully described in 
Methods. 

We observed that a population screening regimen admin-
istering either test with high frequency limited viral spread, 
measured by both a reduction in the reproductive number R 
(Figs. 2A and B; see Methods for calculation procedure) and 
by the total infections that persisted in spite of different 
screening programs, expressed relative to no screening (Figs. 
2C and D). Testing frequency was found to be the primary 
driver of population-level epidemic control, with only a small 
margin of improvement provided by using a more sensitive 
test. Direct examination of simulations showed that with no 
testing or biweekly testing, infections were uncontrolled, 
whereas screening weekly with either LOD = 103 or 105 effec-
tively attenuated surges of infections (examples shown in Fig. 
3). 

The relationship between test sensitivity and the fre-
quency of testing required to control outbreaks in both the 
fully-mixed model and the agent-based model generalize be-
yond the examples shown in Fig. 2 and are also seen at other 
testing frequencies, sensitivities, and asymptomatic fractions. 
We simulated both models at LODs of 103, 105, and 106, and 
for testing ranging from daily to every 14 days. For those, we 
measured each population screening policy’s impact on total 
infections (Figure S1A and B) and on R (Figure S1C and D). 
In Fig. 2, we modeled infectiousness as proportional to log10 
of viral load. To address whether these finding are sensitive 
to this modeled relationship, we performed similar 
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simulations with infectiousness proportional to viral load 
(Figure S2), or uniform above 106/ml (Figure S3). We found 
that results were robust to these large variations in the mod-
eled relationship between infectiousness and viral load. To 
further address whether our results depended on the exact 
35% fraction of individuals assumed to be behaviorally symp-
tomatic, we performed sensitivity analyses with fewer (20%) 
or more (50%) symptomatic individuals and found no mean-
ingful difference in results (Figure S4). 
 
Impact of delayed test results 
An important variable in testing is the time between a test’s 
sample collection and the reporting of a diagnosis. To exam-
ine how time to reporting affected epidemic control, we re-
analyzed both the reduction in individuals’ infectiousness, as 
well as the epidemiological simulations, comparing the re-
sults of instantaneous reporting (reflecting a rapid point-of-
care assay), one day delay, and two day delay (Fig. 4A and B). 
Delays in reporting dramatically decreased the reduction in 
infectiousness in individuals as seen by the total infectious-
ness removed (Fig. 4C), the distribution of infectiousness in 
individuals (Fig. 4D), or the dynamics of the epidemiological 
models (Fig. 5). This result was robust to the modeled rela-
tionship between infectiousness and viral load in both simu-
lation models and for various test sensitivities and 
frequencies (Figure S5). These results highlight that delays in 
reporting lead to dramatically less effective control of viral 
spread and emphasize that fast reporting of results is critical 
in any screening regimen. These results also reinforce the rel-
atively smaller benefits of improved limits of detection. 
 
Generality of findings to changes in modeling assumptions 
Communities vary in their transmission dynamics, due to dif-
ference in rates of imported infections and in the basic repro-
ductive number R0, both of which will influence the 
frequency and sensitivity with which screening tests must oc-
cur. We performed two analyses to illustrate this point. First, 
we varied the rate of external infection in our fully-mixed 
model and confirmed that when the external rate of infection 
is higher, more frequent screening is required to prevent out-
breaks (Figure S6A). Second, we varied the reproductive 
number R0 between infected individuals in both models, and 
confirmed that at higher R0, more frequent screening is also 
required (Figure S6B and C). This may be relevant to institu-
tions like college campuses or military bases wherein fre-
quent classroom setting or dormitory living are likely to 
increase contact rates. Thus, the specific strategy for success-
ful population screening will depend on the current commu-
nity infection prevalence and transmission rate. 

The generality of our findings to different epidemiological 
parameters (Figure S6), relationships between viral load and 
infectiousness (Figures S2 and S3), and proportion of 

symptomatic individuals (Figure S4) led us to ask whether a 
more general mathematical formula could predict R without 
requiring epidemiological simulation. We derived such a for-
mula (Supplemental Text S1) and found that its predicted val-
ues of R were nearly perfectly correlated with simulation-
estimated values (Pearson’s r = 0.998, p < 10−6; Figure S7), 
providing a mathematical alternative to simulation-based 
sensitivity analyses. 
 
Repeated population screening to mitigate an ongoing 
epidemic 
The impact of repeated population screening on transmission 
dynamics led us to hypothesize that testing could be used as 
an active tool to mitigate an ongoing epidemic. To test this 
idea, we simulated an outbreak situation using both the fully-
mixed and agent-based models but with three additional con-
ditions. First, we assumed that in an ongoing pandemic, 
other mitigating interventions would cause the reproductive 
number to be lower, though nevertheless larger than one. 
Second, we considered that not all individuals would want to 
or be able to participate in a SARS-CoV-2 screening program. 
Third, we assumed that the collection of samples for testing, 
if performed on a large scale, could result in imperfect sample 
collection, causing an increase in the false negative rate, in-
dependent of an assay’s analytical sensitivity. These modifi-
cations are fully described in Methods. 

We simulated epidemics in which screening began only at 
the point when uncontrolled infections reached 4% preva-
lence. Based on results from our previous analyses, we con-
sidered a less sensitive but rapid test with LOD 105 cp/ml and 
a zero-day delay in results, and further assumed that 10% of 
would-be positive samples would be negative due to im-
proper sample collection. We then examined scenarios of 
testing every 3 days and every 7 days, with either 50% or 75% 
of individuals participating, starting from a partially miti-
gated R0 = 1.5. We found that testing 75% of individuals every 
3 days was sufficient to drive the epidemic toward extinction 
within 6 weeks and reduce cumulative incidence by 88%, and 
that other combinations also had successful but less rapid 
mitigating impacts, particularly when compared with no in-
tervention (Fig. 6). Notably, even weekly testing with 50% 
participation was able to reduce the peak and length of the 
outbreak, illustrating how even partial screening using a test 
with 100X lower molecular sensitivity than PCR can have 
public health benefits when used frequently (Fig. 6). Repeat-
ing these simulations using a test with LOD 106 led to similar 
results (Figure S8). To further generalize these results, we 
modified our mathematical formula to predict the impacts of 
per-individual test refusal and per-test sampling-related sen-
sitivity on the reproductive number R (see Supplemental Text 
S1).  
 

 on D
ecem

ber 17, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://www.advances.sciencemag.org/
http://advances.sciencemag.org/


First release: 20 November 2020  www.advances.sciencemag.org (Page numbers not final at time of first release) 4 
 

Discussion 
Our results lead us to conclude that repeated population 
screening of asymptomatic individuals can be used to limit 
the spread of SARS-CoV-2. However, our findings are subject 
to a number of limitations. First, the sensitivity of a test may 
depend on factors beyond LOD, including manufacturer var-
iation and improper clinical sampling (33), though the latter 
may be ameliorated by different approaches to sample collec-
tion, such as saliva-based testing (34). Second, the exact per-
formance differences between testing schemes will depend 
on whether our model truly captures viral kinetics and infec-
tiousness profiles (21), particularly during the acceleration 
phase between exposure and peak viral load. Continued clar-
ification of these within-host dynamics would increase the 
impact and value of this, and other (31, 32, 35, 36) modeling 
studies. Finally, we modeled participation in screening regi-
mens (or refusal thereof) as statistically independent be-
tween individuals, but health-related behaviors have been 
shown to be socially (37) and geographically (38, 39) corre-
lated. Clustered refusal of testing, or refusal to isolate upon 
testing positive, could present challenging barriers to imple-
mentation. 

Our findings show that the impact of repeated population 
screening can be expressed as a reduction of the reproductive 
number R. By mapping a given testing regimen to a reduction 
in R, the impact of testing regimen can be approximated and 
generalized without complicated simulations. For instance, 
one could estimate the maximum allowable turnaround time 
delays, or the minimum testing frequency required to bring 
R below one, based on user-specified and scenario-specific as-
sumptions. To facilitate such generalizations and scenario plan-
ning, open-source calculation tools accompany this manuscript. 

A critical point is that the requirements for screening tests 
are distinct from clinical tests. Clinical diagnoses target 
symptomatic individuals, need high accuracy and sensitivity, 
and are not limited by cost. Because they focus on sympto-
matic individuals, those individuals can isolate such that a 
diagnosis delay does not lead to additional infections. In con-
trast, results from the screening of asymptomatic individuals 
need to be returned quickly, since even a single day diagnosis 
delay compromises the screening program’s effectiveness. In-
deed, at least for viruses with infection kinetics similar to 
SARS-CoV-2, we find that speed of reporting is much more 
important than sensitivity, although more sensitive tests are 
nevertheless somewhat more effective. 

The difference between clinical and screening tests high-
lights the need for additional tests to be approved and uti-
lized for screening. Such tests should not be held to the same 
degree of sensitivity as clinical tests, in particular if doing so 
encumbers rapid deployment of faster cheaper SARS-CoV-2 
assays. We suggest that the FDA, other agencies, or state gov-
ernments, encourage the development and use of alternative 

faster and lower cost tests for public health and repeated pop-
ulation screening purposes, even if they have poorer limits of 
detection. If the availability of point-of-care or self-adminis-
tered screening tests leads to faster turnaround time or more 
frequent testing, our results suggest that they would have 
high epidemiological value. 

Our modeling suggests that some types of repeated popu-
lation screening will subject some individuals to unnecessary 
quarantine days. For instance, the infrequent use of a sensi-
tive test will not only identify (i) those with a low viral load 
in the beginning of the infection, who must be isolated to 
limit viral spread, but (ii) those in the recovery period, who 
still have detectable virus or RNA but are below the infectious 
threshold (13, 14). Isolating this second group of patients will 
have no impact on viral spread but will incur costs of isola-
tion, as would the isolation of individuals who received a false 
positive test result due to imperfect test specificity. The use 
of serology, repeat testing 24 or 48 hours apart, or some other 
test, to distinguish low viral load patients on the upslope of 
infection from those in the recovery phase could allow for 
more effective quarantine decisions. 
 
Materials and Methods 
Viral Loads 
Viral loads were drawn from a simple viral kinetics model 
intended to capture (1) a variable latent period, (2) a rapid 
growth phase from the lower limit of PCR detectability to a 
peak viral load, (3) a slower decay phase, and (4) prolonged 
clearance for symptomatic infections vs asymptomatic infec-
tions. These dynamics were based on the following observations. 

Latent periods prior to symptoms have been estimated to 
be around 5 days (40). Latent periods prior to detection via 
virological tests at secondary sites of replication or shedding 
have been estimated to be up to 4 days (41), corresponding to 
a latent or eclipse phase observed with other viruses (42). Vi-
ral load appears to peak prior to symptom onset (21), and 
peaks within 2 days of challenge in a macaque model (43, 44), 
though it should be noted that macaque challenge doses were 
high. Viral load decreases monotonically from the time of 
symptom onset (21, 45–48), but may be high and detectable 3 
or more days before symptom onset (1, 49). Peak viral loads 
are difficult to measure due to lack of prospective sampling 
studies of individuals prior to exposure and infection, but vi-
ral loads have been reported in the range of O(104) to O(109) 
copies per ml (12, 47, 48). Viral loads appear to become unde-
tectable by PCR within 3 weeks of symptom onset (45, 48, 50), 
but detectability and timing may differ depending on the de-
gree or presence of symptoms (50, 51). The majority of studies 
reviewed by Cevik et al. (18) found initial viral loads to be 
similar between symptomatic and asymptomatic infections 
(1, 24–26), but viral clearance was significantly and substan-
tially faster among asymptomatic infections (24, 26–29). 
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Finally, we note that the general understanding of viral ki-
netics may vary depending on the mode of sampling, as 
demonstrated via a comparison between sputum and swab 
samples (12). For a comprehensive review of viral load dynam-
ics, duration of shedding, and infectiousness, see Ref. (18). 

To mimic growth and decay, log10 viral loads were speci-
fied by a continuous piecewise linear “hinge” function, speci-
fied uniquely with three control points: (t0,3), (tpeak,Vpeak),(tf,6) 
(Fig. 7A; green squares). The first point represents the time 
at which an individual’s viral load first crosses 103, with t0 ∼ 
unif[2.5,3.5], measured in days since exposure. The second 
point represents the peak viral load. Peak height was drawn 
Vpeak ∼ unif (7, 11), and peak timing was drawn with respect 
to the start of the exponential growth phase, tpeak − t0 ∼ 0.5 + 
gamma(1.5) with a maximum of 3. The third point represents 
the time at which an individual’s viral load crosses beneath 
the 106 threshold, at which point viral loads no longer cause 
active cultures in laboratory experiments (11–13, 18). For 
asymptomatic infections, this point was drawn with respect 
to peak timing, tf − tpeak ∼ unif (4, 9). For symptomatic infec-
tions, a symptom onset time was first drawn with respect to 
peak timing, tsymptoms − tpeak ∼ unif[0,3], and then the third 
control point was drawn with respect to symptom onset, tf − 
tsymptoms ∼ unif (4, 9). Thus, symptomatic trajectories are sys-
tematically longer, in both duration of infectiousness (see be-
low) and duration of viral shedding, reflecting the 
documented prolonged clearance and relationship with viral 
culture experiments (Fig. 7B; red circles). In simulations, 
each viral load’s parameters were drawn independently of 
others, and the continuous function described here was eval-
uated at 28 integer time points (Fig. 7; black dots) represent-
ing a four-week span of viral load values. 
 
Infectiousness 
Infectiousness F was assumed to be directly related to viral 
load V in one of three ways. In the main text, each individual’s 
relative infectiousness was proportional log10 of viral load’s 
excess beyond 106, i.e., F ∝ log10(V) − 6. In the supplementary 
sensitivity analyses, we investigated two opposing extremes. 
To capture a more extreme relationship between infectious-
ness and viral load, we considered F to be directly propor-
tional to viral load’s excess above 106, i.e., F ∝ 10log10(V )−6 = V 
× 10−6, and to capture a more extreme relationship, but in the 
opposing direction, we considered F to simply be a constant 
when viral load exceeded 106, i.e., F ∝1V>106. We call these 
three functions log-proportional, proportional, and threshold 
throughout the text and supplemental materials. 

We note that a comprehensive review of viral loads, shed-
ding, and infectiousness (18) found that across the surveyed 
literature, no virus was able to be cultured beyond 9 days 
post-symptoms. Thus, the choice of the final control point in 
our symptomatic viral load model (Fig. 7B), which 

corresponds to the latest time at which an individual is infec-
tious, is at most 9 days post-symptom onset. 

Recently, He et al. (21) published an analysis of infectious-
ness relative to symptom onset which was corrected by Bon-
hoeffer et al. (see (21) for details). Among our infectiousness 
functions, this inferred relationship bears the greatest simi-
larity, over time, to the log-proportional infectiousness func-
tion, as visualized in Figs. 1 and 4. The proportional and 
threshold models therefore represent one of many types of 
sensitivity analysis. Results for those models can be found in 
Figures S2, S3, and S5. 

In all simulations, the value of the proportionality con-
stant implied by the infectiousness functions above was cho-
sen to achieve the targeted value of R0 for that simulation and 
confirmed via simulation as described below. 
 
Disease Transmission Models 
Overview 
Two models were used to simulate SARS-CoV-2 dynamics, 
both based on a typical compartmental framework. The first 
model was a fully-mixed model of N = 20,000 individuals 
with all-to-all contact structure, zero initial infections, and a 
constant 1/N per-person probability of becoming infected 
from an external source. This model could represent, for in-
stance, a large college campus with high mixing, situated 
within a larger community with low-level disease prevalence. 
The second model was an agent-based model of N = 8.4 mil-
lion agents representing the population and contact structure 
of New York City, as previously described (30). Contact pat-
terns were based on a combination of individual-level house-
hold contacts drawn from census microdata and age-
stratified contact matrices which describe outside of house-
hold contacts. This model was initialized with 100 initial in-
fections and no external sources of infection. 

Both the fully-mixed and agent-based models tracked dis-
crete individuals who were Susceptible (S), Infected (I), Re-
covered (R), Isolated (Q), and Self-Isolated (SQ) at each 
discrete one-day timestep. Upon becoming infected (S → I), a 
viral load trajectory V (t) was drawn which included a latent 
period, growth, and decay. Each day, an individual’s viral load 
trajectory was used to determine whether their diagnostic 
test would be positive if administered, as well as their infec-
tiousness to susceptible individuals. Based on a schedule of 
testing each person every D days, if an individual happened 
to be tested on a day when their viral load exceeded the limit 
of detection L of the test, their positive result would cause 
them to isolate (I → Q), but with the possibility of a delay in 
turnaround time. A fraction 1 − f of individuals self-isolate on 
the day of symptom onset, which occurs 0 to 3 days after peak 
viral load, to mimic symptom-driven isolation (I → SQ), with 
f = 0.65 for both models, with f = 0.8 and f = 0.5 explored in 
sensitivity analyses (Figure S4). Presymptomatic individuals 
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were isolated prior to symptom onset only if they received 
positive test results. When an individual’s viral load dropped 
below 103, that individual recovered (I,Q,SQ → R). Details follow. 
 
Testing, Isolation, and Sample-to-Answer Turnaround Times 
All individuals were tested every D days, so that they could 
be moved into isolation if their viral load exceeded the test’s 
limit of detection V (t) > L. Each person was deterministically 
tested exactly every D days, but testing days were drawn uni-
formly at random such that not all individuals were tested on 
the same day. To account for delays in returning test results, 
we included a sample-to-answer turnaround time T, meaning 
that an individual with a positive test on day t would isolate 
on day t + T. 
 
Transmission, Population Structure, and Mixing Patterns: 
Fully-mixed model 
Simulations were initialized with all individuals susceptible, 
S = N. Each individual was chosen to be symptomatic inde-
pendently with probability f, and each individual’s first test 
day (e.g., the day of the week that their weekly test would 
occur) was chosen uniformly at random between 1 and D. Rel-
ative infectiousness was scaled up or down to achieve the 
specified R0 in the absence of any testing policy, but inclusive 
of any assumed self-isolation of symptomatics. 

In each timestep, those individuals who were marked for 
testing that day were tested, and a counter was initialized to 
T, specifying the number of days until that individual re-
ceived their results. Next, individuals whose test results coun-
ters were zero were isolated, I → Q. Then, symptomatic 
individuals whose viral load had declined relative to the pre-
vious day were self-isolated, I → SQ. Next, each susceptible 
individual was spontaneously (externally) infected inde-
pendently with probability 1/N, S → I. Then, all infected indi-
viduals contacted all susceptible individuals, with the 
probability of transmission based on that day’s viral load V 
(t) for each person and the particular infectiousness function, 
described above, S → I. 

To conclude each time step, individuals’ viral loads and test 
results counters were advanced, with those whose infectious 
period had completely passed moved to recovery, I,Q,SQ → R. 
 
Transmission, Population Structure, and Mixing Patterns: 
Agent-based model 
The agent-based model added viral kinetics and testing poli-
cies (as described above) to an existing model for SARS-CoV-
2 transmission in New York City. A full description of the 
agent-based model is available (30); here we provide an over-
view of the relevant transmission dynamics. 

Simulations were initialized with all individuals suscepti-
ble, except for 100 initially infected individuals, S = N −100. 
As in the fully-mixed model, each individual’s test day was 

chosen uniformly at random and relative infectiousness was 
scaled to achieve the specified R0. 

In each timestep, those individuals who were marked for 
testing that day were tested, and a counter was initialized to 
T, specifying the number of days until that individual re-
ceived their results. Next, individuals whose test results coun-
ters were zero were isolated, I → Q. There was no self-isolation 
in this model (and accordingly, the model did not label indi-
viduals as symptomatic or asymptomatic). 

Then, transmission from infected individuals to suscepti-
ble individuals was simulated both within and outside house-
holds. To model within-household transmission, each 
individual had a set of other individuals comprising their 
household. Household structures, along with the age of each 
individual, were sampled from census microdata for New 
York City (52). The probability for an infectious individual to 
infect each of their household members each day was deter-
mined by scaling the relative infectiousness values to match 
the estimated secondary attack rate for close household con-
tacts previously reported in case cluster studies (53). 

Outside of household transmission was simulated using 
age-stratified contact matrices, which describe the expected 
number of daily contacts between an individual in a given age 
group and those in each other age group. Each infectious in-
dividual of age i drew Poisson(Mij) contacts with individuals 
in age group j, where M is the contact matrix. The contacted 
individuals were sampled uniformly at random from age 
group j. We use a contact matrix for the United States esti-
mated by (54). Each contact resulted in infection, S → I, with 
probability proportional to the relative infectiousness of the 
infected individual on that day, scaled to obtain the specified 
value of R0. 

To conclude each time step, individuals’ viral loads and test 
results counters were advanced, with those whose infectious 
period had completely passed moved to recovery, I,Q → R. 

 
Calibration to achieve targeted R0 and estimation of R 
As a consistency check, each simulation’s R0 was estimated as 
follows, to ensure that simulations were properly calibrated 
to their intended values. Note that to vary R0, the proportion-
ality constant in the function that maps viral load to infec-
tiousness need only be adjusted up or down. In a typical SEIR 
model, this would correspond to changing the infectiousness 
parameter which governs the rate at which I-to-S contacts 
cause new infections β. 

For the fully-mixed, the value of R0 was numerically esti-
mated by running single-generation simulations in which a 
50 infected individual were placed in a population of N − 50 
others. The number of secondary infections from those ini-
tially infected was recorded and used to directly estimate R0. 

For the agent-based model, the value of R0 depends on the 
distribution of infected agents due to stratification by age and 
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household. We numerically estimate R0 by averaging over the 
number of secondary infections caused by each agent who 
was infected in the first 15 days of the simulation (at which 
point the population is still more than 99.99% susceptible). 

Estimations of R proceeded exactly as estimations of R0 
for both models, except with interventions applied to the vi-
ral loads and therefore the dynamics. Prediction of R without 
direct simulation is described in Supplemental Text S1. 
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Fig. 1. Population screening regimen effectiveness depends on frequency. (A) An example viral load trajectory 
is shown with LOD thresholds of two tests, and a hypothetical positive test on day 6, two days after peak viral 
load. 20 other stochastically generated viral loads are shown to highlight trajectory diversity (light grey; see 
Methods). (B) Relative infectiousness for the viral load shown in panel A pre-test, totaling 35% (blue) and post-
isolation, totaling 65% (black). (C) Screening programs using tests at LODs of 103 and 105 at frequencies 
indicated were applied to 10,000 individuals’ trajectories of whom 35% would undergo symptomatic isolation 
near their peak viral load if they had not been tested and isolated first. Total infectiousness removed during 
screening (colors) and self-isolation (hatch) are shown for repeated population screening as indicated, relative 
to total infectiousness with no screening or self-isolation. (D) The impact of repeated population screening on the 
infectiousness of 100 individuals is shown for each screening regimen and no testing, as indicated, with each 
individual colored by test if their infection was detected during infectiousness (medians, black lines) or colored 
blue if their infection was missed by screening or detected positive after their infectious period (medians, blue 
lines). Units are arbitrary and scaled to the maximum infectiousness of sampled individuals. 
 

 on D
ecem

ber 17, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://www.advances.sciencemag.org/
http://advances.sciencemag.org/


First release: 20 November 2020  www.advances.sciencemag.org (Page numbers not final at time of first release) 11 
 

  

  

Fig. 2. Repeated population screening affects disease dynamics. Both the fully-mixed compartmental model (top 
row) and agent based model (bottom row) are affected by repeated population screening. (A, B) More frequent 
testing reduces the effective reproductive number R, shown as the percentage by which R0 is reduced, 100 _ (R0 � 
R)=R0. Values of R were estimated from 50 independent simulations of dynamics with 100% of the population 
participating (see Methods). (C, D) Relative to no testing (grey bars), screening suppresses the total number of 
infections in both models when testing every day or every three days, but only partially mitigates total cases for 
weekly or bi-weekly testing. Error bars indicate inner 95% quantiles of 50 independent simulations each. 
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Fig. 3. Example simulation trajectories from fully mixed model with repeated population screening. 
Simulation trajectories show the number of infected individuals in a population of N = 20; 000 with a constant 
rate of external infection set to 1=N per person per day, i.e., around 1 imported case per day, and full participation 
in the testing regimen. Infections are classified as freely mixing in the population (blue), isolated due to a positive 
test (black) or isolated due to symptoms (red) in four simulated example scenarios with R0 = 2:5. (A) No 
screening. (B) Weekly testing at LOD 103. (C) Weekly testing at LOD 105. (D) Testing every 3 days with LOD 105. 
Note the variation in the vertical axis scales. The model is fully described in Methods. 
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Fig. 4. Effectiveness of screening is compromised by delays in reporting. (A) An example viral load 
trajectory is shown with LOD thresholds of two tests, and a hypothetical positive test on day 6, but with 
results reported on day 8. 20 other stochastically generated viral loads are shown to highlight trajectory 
diversity (light grey; see Methods). (B) Relative infectiousness for the viral load shown in panel A pre-test 
(totaling 35%; blue) and post-test but prediagnosis (totaling 34%; green), and post-isolation (totaling 31%; 
black). (C) Population screening programs using tests at LODs of 103 and 105 at frequencies indicated, and 
with results returned after 0, 1, or 2 days (indicated by small text beneath bars) were applied to 10; 000 
individuals trajectories of whom 35% were symptomatic and self-isolated after peak viral load if they had not 
been tested and isolated first. Total infectiousness removed during screening (colors) and self-isolation 
(hatch) are shown, relative to total infectiousness with no screening or self-isolation. Delays substantially 
impact the fraction of infectiousness removed. (D) The impact of screening with delays in returning diagnosis 
of 0, 1, or 2 days (small text beneath axis) on the infectiousness of 100 individuals is shown for each 
population screening regimen and no testing, as indicated, with each individual colored by test if their 
infection was detected during infectiousness (medians, black lines) or colored blue if their infection was 
missed by screening or diagnosed positive after their infectious period (medians, blue lines). Units are 
arbitrary and scaled to the maximum infectiousness of sampled individuals. 
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Fig. 5. Delays in reporting decrease the epidemiological impact of testing-driven isolation. The effectiveness of 
population screening programs are dramatically diminished by delays in reporting in both the fully-mixed 
compartmental model (top row) and agent based model (bottom row). (A, B) The impact of testing every day, 3 
days, weekly, or biweekly, on the reproductive number R, calculated as 100 _ (R0 � R)=R0, is shown for LODs 103 
and 105 and delays of 0, 1, or 2 days (small text below axis). Values of R were estimated from 50 independent 
simulations of dynamics (see Methods). (C, D) Relative to no testing (grey bars), repeated population screening 
suppresses the total number of infections in both models when testing every day or every three days, but delayed 
results lead to only partial mitigation of total cases, even for testing every day or 3 days. Error bars indicate inner 
95% quantiles of 50 independent simulations each. 
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Fig. 6. Repeated population screening suppresses an ongoing epidemic. Widespread testing and isolation 
of infected individuals drives prevalence downward for both (A) the fully-mixed compartmental model and 
(B) the agent based model. Time-series of prevalence, measured as the total number of infectious 
individuals, are shown for no intervention (solid) and population screening scenarios (various dashed; see 
legend) for individual stochastic simulations. Screening began only when prevalence reached 4% (box), and 
time series are shifted such that testing begins at t = 0. Scenarios show the impact of a test with LOD 105, 
no delay in results, and with 10% of samples assumed to be incorrectly collected (and therefore negative) 
to reflect decreased sensitivity incurred at sample collection in a mass testing scenario. Annotations show 
total number of post-intervention infections, as a percentage of the no-intervention scenario, labeled as 
100%. See Fig. S8 for identical simulations using a test with LOD 106. 
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Fig. 7. Example asymptomatic and symptomatic viral loads with model 
control points. Examples of model viral loads (lines) and corresponding 
stochastically drawn control points (squares, circles) are shown for (A) an 
asymptomatic viral load trajectory and (B) a symptomatic viral load 
trajectory. Because simulations took place in discrete time, black dots show 
points at which this example viral load would have been sampled. Light grey 
lines show 20 alternative trajectories in each panel to illustrate the diversity 
of viral loads drawn from the simple model. Red circles indicate the control 
points which are modified in symptomatic trajectories to account for 
symptom onset and prolonged time till clearance. 
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