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Abstract

We propose and study Collapsing Bandits, a new restless multi-armed bandit
(RMAB) setting in which each arm follows a binary-state Markovian process
with a special structure: when an arm is played, the state is fully observed, thus
“collapsing” any uncertainty, but when an arm is passive, no observation is made,
thus allowing uncertainty to evolve. The goal is to keep as many arms in the “good”
state as possible by planning a limited budget of actions per round. Such Collapsing
Bandits are natural models for many healthcare domains in which health workers
must simultaneously monitor patients and deliver interventions in a way that
maximizes the health of their patient cohort. Our main contributions are as follows:
(i) Building on the Whittle index technique for RMABs, we derive conditions under
which the Collapsing Bandits problem is indexable. Our derivation hinges on novel
conditions that characterize when the optimal policies may take the form of either
“forward” or “reverse” threshold policies. (ii) We exploit the optimality of threshold
policies to build fast algorithms for computing the Whittle index, including a closed
form. (iii) We evaluate our algorithm on several data distributions including data
from a real-world healthcare task in which a worker must monitor and deliver
interventions to maximize their patients’ adherence to tuberculosis medication. Our
algorithm achieves a 3-order-of-magnitude speedup compared to state-of-the-art
RMAB techniques, while achieving similar performance. The code is available at:
https://github.com/AdityaMate/collapsing_bandits

1 Introduction

Motivation. This paper considers scheduling problems in which a planner must act on k out of N
binary-state processes each round. The planner fully observes the state of the processes on which
she acts, then all processes undergo an action-dependent Markovian state transition; the state of the
process is unobserved until it is acted upon again, resulting in uncertainty. The planner’s goal is to
maximize the number of processes that are in some “good” state over the course of T rounds. This
class of problems is natural in the context of monitoring tasks which arise in many domains such as
sensor/machine maintenance [12, 10, 1, 33], anti-poaching patrols [27], and especially healthcare. For
example, nurses or community health workers are employed to monitor and improve the adherence
of patient cohorts to medications for diseases like diabetes [24], hypertension [4], tuberculosis [28, 5]
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and HIV [17, 16]. Their goal is to keep patients adherent (i.e., in the “good” state) but a health
worker can only intervene on (visit) a limited number of patients each day. Health workers can play a
similar role in monitoring and delivering interventions for patient mental health, e.g., in the context
of depression [21, 23] or Alzheimer’s Disease [19].

We adopt the solution framework of Restless Multi-Arm Bandits (RMABs), a generalization of Multi-
Arm Bandits (MABs) in which a planner may act on k out of N arms each round that each follow a
Markov Decision Process (MDP). Solving an RMAB is PSPACE-hard in general [25]. Therefore, a
common approach is to consider the Lagrangian relaxation of the problem in which the k

N budget
constraint is dualized. Solving the relaxed problem gives Lagrange multipliers which act as a greedy
index heuristic, known as the Whittle index, for the original problem. Specifically, the Whittle index
policy computes the Whittle index for each arm, then plays the top k arms with the largest indices.
The Whittle index policy has been shown to be asymptotically optimal (i.e., N →∞ with fixed k

N )
under a technical condition [34] and generally performs well empirically [3] making it a common
solution technique for RMABs.

Critically, using the Whittle index policy requires two key components: (i) a fast method for
computing the index and (ii) proving the problem satisfies a technical condition known as indexability.
Without (i) the approach can be prohibitively slow, and without (ii) asymptotic performance guarantees
are sacrificed [34]. Neither (i) nor (ii) are known for general RMABs. Therefore, to capture the
scheduling problems addressed in this work, we introduce a new subclass of RMABs, Collapsing
Bandits, distinguished by the following feature: when an arm is played, the agent fully observes
its state, “collapsing” any uncertainty, but when an arm is passive, no observation is made and
uncertainty evolves. We show that this RMAB subclass is more general than previous models and
leads to new theoretical results, including conditions under which the problem is indexable and under
which optimal policies follow one of two simple threshold types. We use these results to develop
algorithms for quickly computing the Whittle index. In experiments, we analyze the algorithms’
performance on (i) data from a real-world healthcare scheduling task in which our approach ties
state-of-the-art performance at a fraction the runtime and (ii) various synthetic distributions, some
of which the algorithm achieves performance comparable to the state of the art even outside its
optimality conditions.

To summarize, our contributions are as follows: (i) We introduce a new subclass of RMABs, Collaps-
ing Bandits, (ii) Derive theoretical conditions for Whittle indexability and for the optimal policy to be
threshold-type, and (iii) Develop an efficient solution that achieves a 3-order-of-magnitude speedup
compared to more general state-of-the-art RMAB techniques, without sacrificing performance.

2 Restless Multi-Armed Bandits

An RMAB consists of a set of N arms, each associated with a two-action MDP [26]. An MDP
{S,A, r, P} consists of a set of states S, a set of actions A, a state-dependent reward function
r : S → R, and a transition function P , where P as,s′ denotes the probability of transitioning from state
s to s′ when action a is taken. An MDP policy π : S → A represents a choice of action to take at each
state. We will consider both discounted and average reward criteria. The long-term discounted reward
starting from state s0 = s is defined as Rπβ(s) = E [

∑∞
t=0 β

tr(st+1 ∼ T (st, π(st), st+1)|π, s0 = s]

where β ∈ [0, 1) is the discount factor and actions are selected using π. To define average reward, let
fπ(s) : S → [0, 1] denote the occupancy frequency induced by policy π, i.e., the fraction of time
spent in each state of the MDP. The average reward R

π
of policy π be defined as the expected reward

computed over the occupancy frequency: R
π

=
∑
s∈S f

π(s)r(s).

Each arm in an RMAB is an MDP with the action set A = {0, 1}. Action 1 (0) is called the active
(passive) action and denotes the arm being pulled (not pulled). The agent can pull at most k arms
at each time step. The agent’s goal is to maximize either her discounted or average reward across
the arms over time. Some RMAB problems need to account for partial observability of states. It
is sufficient to let the MDP state be the belief state: the probability of being in each latent state
[15]. While intractable in general due to infinite number of reachable belief states, most partially
observable RMABs studied (including our Collapsing Bandits) have polynomially many belief states
due to a finite time horizon or other structures.
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Related work RMABs have been an attractive framework for studying various stochastic scheduling
problems since Whittle indices were introduced [36]. Because general RMABs are PSPACE-hard
[25], RMAB studies usually consider restricted classes under which some performance guarantees
can be derived. Collapsing Bandits form one such novel class that generalizes some existing results
which we note in later sections. Liu and Zhao [20] develop an efficient Whittle index policy for
a 2-state partially observable RMAB subclass in which the state transitions are unaffected by the
actions taken and reward is accrued from the active arms only. Akbarzadeh and Mahajan [2] define a
class of bandits with “controlled restarts,” giving indexability results and a method for computing the
Whittle index. However, “controlled restarts” define the active action as state independent, a stronger
assumption than Collapsing Bandits which allow state-dependent action effects. Glazebrook et al.
[10] give Whittle indexability results for three classes of restless bandits: (1) A machine maintenance
regime with deterministic active action effect (we consider stochastic active action effect) (2) A
switching regime in which the passive action freezes state transitions (in our setting, states always
change regardless of action) (3) A reward depletion/replenishment bandit which deterministically
resets to a start state on passive action (we consider stochastic passive action effect). Hsu [11]
and Sombabu et al. [30] augment the machine maintenance problem from Glazebrook et al. [10] to
include either i.i.d. or Markovian evolving probabilities of an active action having no effect, a limited
form of state-dependent action. Meshram et al. [22] introduce Hidden Markov Bandits which, similar
to our approach, consider binary state transitions under partial observability, but do not allow for
state dependent rewards on passive arms. In sum, our Collapsing Bandits introduce a new, more
general RMAB formulation than special subclasses previously considered. Qian et al. [27] present a
generic approach for any indexable RMAB based on solving the (partially observable) MDPs on arms
directly. Because we derive a closed form for the Whittle index, our algorithm is orders of magnitude
faster.

3 Collapsing Bandits

We introduce Collapsing Bandits (CoB) as a specially structured RMAB with partial observability.
In CoB, each arm n ∈ {1, . . . , N} has binary latent states S = {0, 1}, representing bad and good
state, respectively. The agent acts during each of finite days t ∈ 1, . . . , T . Let at ∈ {0, 1}N denote
the vector of actions taken by the agent on day t. Arm n is said to be active at t if at(n) = 1 and
passive otherwise. The agent acts on k arms per day, i.e., ‖at‖ = k, where k � N because resources
are limited. When acting on arm n, the true latent state of n is fully observed by the agent and thus
its uncertainty “collapses” to a realization of the binary latent state. We denote this observation as
ω ∈ S. States of passive arms are completely unobservable by the agent.

b0(1)

b1(1)

b0(2)

b1(2)

b0(3)

b1(3)

b0(4)

b1(4)

...

...

1 1 1 1

1 1 1 1

Figure 1: Belief-state MDP under the policy
of always being passive. There is one chain
for each observation ω ∈ {0, 1} with the head
marked black. Belief states deterministically
transition down the chains.

Active arms transition according to the transition
matrix P a,ns,s′ and passive arms transition according
to P p,ns,s′ . We drop the superscript n when there is
no ambiguity. Our scheduling problem, like many
problems in analogous domains, exhibits the follow-
ing natural structure: (i) processes are more likely to
stay “good” than change from “bad” to “good”; (ii)
when acted on, they tend to improve. These natural
structures are respectively captured by imposing the
following constraints on P p and P a for each arm:
(i) P p0,1 < P p1,1 and P a0,1 < P a1,1; (ii) P p0,1 < P a0,1
and P p1,1 < P a1,1. To avoid unnecessary complication
through edge cases, all transition probabilities are
assumed to be nonzero. The agent receives reward
rt =

∑N
n=1 st(n) at t, where st(n) is the latent state of arm n at t. The agent’s goal is to maximize

the long term rewards, either discounted or average, defined in Sec. 2.

Belief-State MDP Representation In limited observability settings, belief-state MDPs have orga-
nized chain-like structures, which we will exploit. In particular, the only information that affects our
belief of an arm being in state 1 is the number of days since that arm was last pulled and the state ω
observed at that time. Therefore, we can arrange these belief states into two “chains” of length T ,
each for an observation ω. A sketch of the belief state chains under the passive action is shown in
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Fig. 1. Let bω(u) denote the belief state, i.e., the probability that the state is 1, if the agent received
observation ω ∈ {0, 1} when it acted on the process u days ago. Note that bω(u) is also the expected
reward associated with that belief state, and let B be the set of all belief states.

When the belief-state MDP is allowed to evolve under some policy, the following mechanism arises:
first, after an action, the state ω is observed (uncertainty “collapses”), then one round passes causing
the agent’s belief to become P aω,1, representing the head of the chain determined by ω. Subsequent
passive actions cause the process to transition deterministically down the same chain (though, the
transition in the latent state is still stochastic). Then when the process’s arm is active, it transitions to
the head of one of the chains with probability equal to the belief that the corresponding observation
would be emitted (see Fig. 2a for an illustration).

The belief associated with a belief state can be calculated in closed form with the given transition
probabilities. Formally,

bω(u) = τu−1(P a
ω,1) ∀u ∈ [T ] where τu(b) =

P p
0,1 − (P p

1,1 − P
p
0,1)u(P p

0,1 − b(1 + P p
0,1 − P

p
1,1))

(1 + P p
0,1 − P

p
1,1)

(1)

4 Collapsing Bandits: Threshold Policies and Whittle Indexability

Because of the well-known intractability of solving general RMABs, the widely adopted solution con-
cept in the literature of RMABs is the Whittle index approach; for a comprehensive description, see
Whittle [36]. Intuitively, the Whittle index captures the value of acting on an arm in a particular state
by finding the minimum subsidym the agent would accept to not act, where the subsidy is some exoge-
nous “donation” of reward. Formally, the modified reward function becomes rm : S×A → R, where
rm(s, 0) = r(s)+m and rm(s, 1) = r(s). LetRπβ,m(s) = E [

∑∞
t=0 β

trm(st, π(st))|π, s0 = s] and
R
π

m =
∑
s∈S f

π(s)rm(s, π(s)) be the discounted and average reward criteria for this new subsidy
setting, respectively. The former is maximized by the discounted value function (we give a value
function for the average reward criterion in Fast Whittle Index Computation):

Vm(b) = max

{
m+ b+ βVm(τ1(b)) passive
b+ β(bVm(P a1,1) + (1− b)Vm(P a0,1)) active

(2)

where τ is defined in Eq. 1 and b is shorthand for bω(u). In a CoB, the Whittle index of a belief state
b is the smallest m s.t. it is equally optimal to be active or passive in the current state. Formally:

W (b) = inf
m
{m : Vm(b; a = 0) ≥ Vm(b; a = 1)} (3)

Critically, performance guarantees hold only if the problem satisfies indexability [34, 36], a condition
which says that for all states, the optimal action cannot switch to active as m increases. Let Π∗m be
the set of policies that maximize a given reward criterion under subsidy m.
Definition 1 (Indexability). An arm is indexable if B∗(m) = {b : ∀π ∈ Π∗m, π(b) = 0} monotoni-
cally increases from ∅ to the entire state space as m increases from−∞ to∞. An RMAB is indexable
if every arm is indexable.

The following special type of MDP policy is central to our analysis.
Definition 2 (Threshold Policies). A policy is a forward (reverse) threshold policy if there exists a
threshold bth such that π(b) = 0 (π(b) = 1) if b > bth and π(b) = 1 (π(b) = 0) otherwise.
Theorem 1. If for each arm and any subsidy m ∈ R, there exists an optimal policy that is a forward
or reverse threshold policy, the Collapsing Bandit is indexable under discounted and average reward
criteria.

Proof Sketch. Using linearity of the value function in subsidy m for any fixed policy, we first argue
that when forward (reverse) threshold policies are optimal, proving indexability reduces to showing
that the threshold monotonically decreases (increases) with m. Unfortunately, establishing such a
monotonic relationship between the threshold andm is a well-known challenging task in the literature
that often involves problem-specific reasoning [20]. Our proof features a sophisticated induction
argument exploiting the finite size of B and relies on tools from real analysis for limit arguments.
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Figure 2: (a) Visualization of forward threshold policy (X0 = 4,X1 = 3). Black nodes are the
head of each chain and grey nodes are the thresholds. (b) Non-increasing belief (NIB) process has
non-increasing belief in both chains. A split belief process (SB) has non-increasing belief after being
observed in state 1, but non-decreasing belief after being observed in state 0.

All formal proofs can be found in the appendix. We remark that Thm. 1 generalizes the result in
the seminal work by Liu and Zhao [20] who proved the indexability for a special class of CoB. In
particular, the RMAB in Liu and Zhao [20] can be viewed as a CoB setting with P a = P p, i.e.,
transitions are independent of actions.

Though the Whittle index is known to be challenging to compute in general [36], we are able to
design an algorithm that computes the Whittle index efficiently assuming the optimality of threshold
policies, which we now describe.

Fast Whittle Index Computation The main algorithmic idea we use is the Markov chain structure
that arises from imposing a forward threshold policy on an MDP. A forward threshold policy can
be defined by a tuple of the first belief state in each chain that is less than or equal to some belief
threshold bth ∈ [0, 1]. In the two-observation setting we consider, this is a tuple (Xbth

0 , Xbth
1 ), where

Xbth
ω ∈ 1, . . . , T is the index of the first belief state in each chain where it is optimal to act (i.e., the

belief is less than or equal to bth). We now drop the superscript bth for ease of exposition. See Fig. 2a
for a visualization of the transitions induced by such an example policy. For a forward threshold
policy (X0, X1), the occupancy frequencies induced for each state bω(u) are:

f (X0,X1)(bω(u)) =





α if ω = 0, u ≤ X0

β if ω = 1, u ≤ X1

0 otherwise
(4)

α =

(
(X1b0(X0))

1− b1(X1)
+X0

)−1
, β =

(
X1b0(X0)

1− b1(X1)
+X0

)−1
b0(X0)

1− b1(X1)
(5)

These equations are derived from standard Markov chain theory. These occupancy frequencies do not
depend on the subsidy. Let J (X0,X1)

m be the average reward of policy (X0, X1) under subsidy m. We
decompose the average reward into the contribution of the state reward and the subsidy

J (X0,X1)
m =

∑

b∈B

bf (X0,X1)(b) +m(1− f (X0,X1)(b1(X1))− f (X0,X1)(b0(X0))) (6)

Recall that for any belief state bω(u), the Whittle index is the smallest m for which the active
and passive actions are both optimal. Given forward threshold optimality, this translates to two
corresponding threshold policies being equally optimal. Such policies must have adjacent belief states
as thresholds, as can be concluded from Lemma 1 in Appendix 7. Note that for a belief state b0(X0)
the only adjacent threshold policies with active and passive as optimal actions at b0(X0) are (X0, X1)
and (X0 + 1, X1) respectively. Thus the subsidy which makes these two policies equal in value must
thus be the Whittle Index for b0(X0), which we obtain by solving: J (X0,X1)

m = J
(X0+1,X1)
m for m.

We use this idea to construct two fast Whittle index algorithms.

Sequential index computation algorithm Alg. 1 precomputes the Whittle index of every belief
state for each process, having time complexity O(|S|2TN). Then, the per-round complexity to
retrieve the top k indices is O(N min{k, log(N)}). This gives a great improvement over the more
general method given by Qian et al. [27] (our main competitor) which has per-round complexity
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of ≈ O(N log( 1
ε )(|S|T )2+

1
18 ), where log( 1

ε ) is due to a bifurcation method for approximating the
Whittle index to within error ε on each arm and (|S|T )2+

1
18 is due to the best-known complexity of

solving a linear program with |S|T variables [13].

Alg. 1 is optimized for settings in which the Whittle index can be precomputed. However, for online
learning settings, we give an alternative method in Appendix 12 that computes the Whittle index
on-demand, in a closed form.

Algorithm 1: Sequential index computation algorithm
Initialize counters to heads of the chains: X1 = 1, X0 = 1
while X1 < T or X0 < T do

Compute m1 := m such that J (X0,X1)
m = J

(X0,X1+1)
m

Compute m0 := m such that J (X0,X1)
m = J

(X0+1,X1)
m

Set i = arg min{m0,m1} and W (Xi) = min{m0,m1}
Increment Xi

end

Our algorithm also requires that belief is decreasing in X0 and X1. Formally, we require:

Definition 3 (Non-increasing belief (NIB) processes). A process has non-increasing belief if, for any
u ∈ [T ] and for any ω ∈ S, bω(u) ≥ bω(u+ 1).

All possible CoB belief trends are shown in Fig. 2b. We make this distinction because the computation
of the Whittle index in Alg. 1 is guaranteed to be exact for NIB processes that are also forward
threshold optimal, though we show empirically that our approach works surprisingly well for most
distributions. In the next section, we analyze the possible forms of optimal policies to find conditions
under which threshold policies are optimal.

Belief0 1Belief0 1Belief0 1

V m
(b

)

Vm(b; a=1) Vm(b; a=0)

Forward Reverse Dual

Figure 3: Components of Vm(b) in Eq. 2. Since
the passive action is convex in b, active action is
linear in b, and value function is a max over these,
at most three optimal policy types are possible.

Types of Optimal Policies Analyzing Eq. 2
reveals that at most three types of optimal poli-
cies exist. This follows directly from the defi-
nition of Vm(b), which is a max over the pas-
sive action value function and the active action
value function. The former is convex in b, a
well-known POMDP result [31], and the latter
is linear in b. Thus, as shown in Fig. 3, there
are three ways in which the value functions of
each action may intersect; this defines three op-
timal policy forms of forward, reverse and dual
threshold types, respectively. Forward and re-
verse threshold policies are defined in Def. 2;
dual threshold policies are active between two
separate threshold points and passive elsewhere. Not only do threshold policies greatly reduce the
optimization search space, they often admit closed form expressions for the index as demonstrated
earlier in this section. We now derive sufficient conditions on the state transition probabilities under
which each type of policy is verifiably optimal.

Theorem 2. Consider a belief-state MDP corresponding to an arm in a Collapsing Bandit. For any
subsidy m, there is a forward threshold policy that is optimal under the condition:

(P p1,1 − P p0,1)(1 + β(P a1,1 − P a0,1))(1− β) ≥ P a1,1 − P a0,1 (7)

Proof Sketch. Forward threshold optimality requires that if the optimal action at a belief b is passive,
then it must be so for all b′ > b. This can be established by requiring that the derivative of the passive
action value function is greater than the derivative of the active action value function w.r.t. b. The
main challenge is to distill this requirement down to measurable quantities so the final condition can
be easily verified. We accomplish this by leveraging properties of τ(b) and using induction to derive
both upper and lower bounds on Vm(b1)−Vm(b2) ∀ b1, b2 as well as a lower bound on d(Vm(b))

db .
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Intuitively, the condition requires that the intervention effect on processes in the “bad” state must be
large, making P a1,1 − P a0,1 small. Note that Liu and Zhao [20] consider the case where P a1,1 = P p1,1
and P a0,1 = P p0,1, which makes Eq. 7 always true. Thus we generalize their result for threshold
optimality.
Theorem 3. Consider a belief-state MDP corresponding to an arm in a Collapsing Bandit. For any
subsidy m, there is a reverse threshold policy that is optimal under the condition:

(P p1,1 − P p0,1)
(

1 +
β(P a1,1 − P a0,1)

1− β
)
≤ P a1,1 − P a0,1 (8)

Intuitively, the condition requires small intervention effect on processes in the “bad” state, the
opposite of the forward threshold optimal requirement. Note that both Thm. 2 and Thm. 3 also serve
as conditions for the average reward case as β → 1 (a proof based on Dutta’s Theorem [8] is given in
Appendix 10).
Conjecture 1. Dual threshold policies are never optimal for Collapsing Bandits.

This conjecture is supported by extensive numerical simulations over the random space of state
transition probabilities, values of β, and values of subsidy m; its proof remains an open problem.
Note that this would imply that all Collapsing Bandits are indexable.

5 Experimental Evaluation

We evaluate our algorithm on several domains using both real and synthetic data distributions. We
test the following algorithms: Threshold Whittle is the algorithm developed in this paper. Qian
et al. [27], a slow, but precise general method for computing the Whittle index, is our main baseline
that we improve upon. Random selects k process to act on at random each round. Myopic acts on
the k processes that maximize the expected reward at the immediate next time step. Formally, at time
t, this policy picks the k processes with the largest values of ∆bt = (bt+1|a = 1) − (bt+1|a = 0).
Oracle fully observes all states and uses Qian et al. [27] to calculate Whittle indices. We measure
performance in terms of intervention benefit, where 0% corresponds to the reward of a policy that is
always passive and 100% corresponds to Oracle. All results are averaged over 50 independent trials.

5.1 Real Data: Monitoring Tuberculosis Medication Adherence

We first test on tuberculosis medication adherence monitoring data, which contains daily adherence
information recorded for each real patient in the system, as obtained from Killian et al. [18]. The
“good” and “bad” states of the arm (patient) correspond to “Adhering” and “Not Adhering” to
medication, respectively. State transition probabilities are estimated from the data. Because this data
is noisy and contains only the adherence records and not the intervention (action) information (as the
authors state), we perturb the computed average transition matrix by reducing (increasing) Pω,1 by a
uniform random number between 0 and δ1, δ2 (δ3, δ4) then renormalizing to obtain P pω,1 (P aω,1) for
the simulation. Reward is measured as the undiscounted sum of patients (arms) in the adherent state
over all rounds, where each trial lasts T = 180 days (matching the length of first-line TB treatment)
with N patients and a budget of k calls per day. All experiments in this section set all δ to 0.05.

In Fig. 4a, we plot the runtime in seconds vs the number of patients N . Fig. 4b compares the
intervention benefit for N = 100, 200, 300, 500 patients and k = 10% of N . In the N = 200 case,
the runtimes of a single trial of Qian et al. and Threshold Whittle index policy are 3708 seconds and
3 seconds, respectively, while attaining near-identical intervention benefit. Our algorithm is thus 3
orders of magnitude faster than the previous state of the art without sacrificing performance.

We next test Threshold Whittle as the resource level k is varied. Fig. 4c shows the performance in
the k = 5%N , k = 10%N and k = 15%N regimes (N = 200). Threshold Whittle outperforms
Myopic and Random by a large margin in these low resource settings. We also affirm the robustness
of our algorithm to δ, the perturbation parameter used to approximate real-world P pω,1 and P aω,1 from
the data, and present the extensive sensitivity analysis in Appendix 13. Finally, in Appendix 12 we
couple our algorithm to a Thompson Sampling-based learning approach and show it performs well in
the real-world case where transition probabilities would need to be learned online, supporting the
deployability of our work.
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Figure 4: (a) Threshold Whittle is several orders of magnitude faster than Qian et al. and scales to
thousands of patients without sacrificing performance on realistic data (b). (c) Intervention benefit of
Threshold Whittle is far larger than naive baselines and nearly as large as Oracle.

5.2 Synthetic Domains

We test our algorithm on four synthetic domains, that potentially characterize other healthcare or
relevant domains, and highlight different phenomena. Specifically, we: (i) identify situations when
Myopic fails completely while Whittle remains close to optimal, (ii) analyze the effect of latent
state entropy on policy performance, (iii) identify limitations of Threshold Whittle by constructing
processes for which Threshold Whittle shows separation from Oracle, and (iv) test robustness of
our algorithm outside of the theoretically guaranteed conditions. To facilitate comparison with the
real data distribution, we simulate trials for T = 180 rounds where reward is the undiscounted sum
of arms in state 1 over all rounds. We consider the space of transition probabilities satisfying the
assumed natural constraints, as outlined in Sec. 3.

Fig. 5a demonstrates a domain characterized by processes that are either self-correcting or non-
recoverable. Self-correcting processes have a high probability of transitioning from state 0 to 1
regardless of the action taken, while non-recoverable processes have a low chance of doing so. We
show that when the immediate reward is larger for the former than the latter, Myopic can perform
even worse than Random. That is because a myopic policy always prefers to act on the self-correcting
processes per their larger immediate reward, while Threshold Whittle, capable of long-term planning,
looks to avoid spending resources on these processes. In this regime, the best long-term plan is to
always act on the non-recoverable processes to keep them from failing. Analytical explanation of this
phenomenon is presented in Appendix 11. We set the resource level, k = 10%N in our simulation for
Fig. 5a. Note that performance of Myopic drops as the fraction of self-correcting processes becomes
larger and reaches a minimum at x = 100%− k = 90%. Beyond this point, Threshold Whittle can
no longer completely avoid self-correcting processes and the gap subsequently starts to decrease.

Fig. 5b explores the effect of uncertainty in the latent state on long-term planning. For each point on
the x-axis, we draw all transition probabilities according to P pω,1, P

a
ω,1 ∼ [x, x+ 0.1]. The entropy of

the state of a process is maximum near 0.5 making long term planning most uncertain and as a result,
this point shows the biggest gap with Oracle, which can observe all the states in each round. Note that
Myopic and Whittle policies perform similarly, as expected for (nearly) stochastically identical arms.

Fig. 5c studies processes that have a large propensity to transition to state 0 when passive and a
corresponding low active action impact, but a significantly larger active action impact in state 1.
This makes it attractive to exclusively act on processes in the 1 state. This simulates healthcare
domains where a fraction of patients degrade rapidly, but can recover, and indeed respond very
well to interventions if already in a good state. To simulate these, we draw transition matrices with
P p0,1, P

p
1,1, P

a
0,1 ∼ [0.3, 0.32] and P a1,1 ∼ [0.7, 0.72] in varying proportions and sample the rest from

the real TB adherence data. Because the best plan is to act on processes in state 1, both Myopic and
Whittle act on the processes with the largest belief giving Oracle a significant advantage as it has
perfect knowledge of states.

Although we provide theoretical guarantees on our algorithm for forward threshold optimal processes
with non-increasing belief, Fig. 5d reveals that Alg. 1 performs well empirically even with these
conditions relaxed. Here, we sample processes uniformly at random from the state transition
probability space, and use rejection sampling to vary the proportion of threshold optimal processes.
Threshold Whittle performs well even when as few as 20% of the processes are forward threshold
optimal; we briefly analyze this phenomenon in Appendix 14.
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Figure 5: (a) Myopic can be trapped into performing even worse than Random while Threshold
Whittle remains close to optimal. (b) Long-term planning is least effective when entropy of states
is maximum. (c) Myopic and Whittle planning become similar when more processes are prone
to failures. (d) Threshold Whittle is surprisingly robust to processes even outside of theoretically
guaranteed conditions.

6 Conclusion

We open a new subspace of Restless Bandits, Collapsing Bandits, which applies to a broad range
of real-world problems, especially in healthcare delivery. We give new theoretical results that cover
a large portion of real-world data as well as an algorithm that runs thousands of times faster than
the state of the art without sacrificing performance. We simultaneously also recognize limitations
of our theoretical results, which become narrow in the average reward case. We envision several
interesting avenues for future work, including techniques to incorporate the user/health worker inputs
for planning, generalizing our inherently 2-state approach to allow for a multi-state model, and
allowing multiple actions and/or more general reward functions.

Broader Impact

Figure 6: CHW delivering vaccine. Credit:
Pippa Ranger.

Our work is largely motivated by resource con-
strained health intervention delivery. This setting is
common across low, middle, and high-income coun-
tries, in which community health workers (CHWs)
are recruited to deliver basic care to a cohort of pa-
tients or benefactors. In fact, CHWs have been criti-
cal in achieving global health initiatives for over five
decades, and evidence shows that CHWs have had a
positive impact in myriad domains including mater-
nal and newborn health [6, 9], (non-)communicable
diseases [6, 29], and sexual/reproductive health [37]
in low-resource communities across the world [7, 9, 29, 35]. Our modeling has the potential to
improve the delivery of care in these highly resource-constrained settings.

However, a deployment of our system to any setting must be done responsibly. For instance, we
designed our system with the intention of assisting human CHWs plan resource-limited interventions.
That said, we present results that highlight our algorithm’s ability to plan for thousands of processes
at a time, far more than for which a human could independently plan. Just making this capability
available could encourage the automation of applicable interventions via automated calls or texts,
potentially displacing CHW jobs, reducing human contact with patients, and unfairly limiting care
for patients with limited access to technology.

Additionally, users of the system must be dutifully aware that its recommendations will be based
solely on the data entered in the system. In the context of medication adherence monitoring, if the
worker enters incorrect data, e.g., the patient was adhering (“good” state) but they instead mark the
patient as not adhering (“bad” state), then the algorithm could make the wrong recommendation
about the patient the next day, since its belief of the patient’s adherence would also be wrong.

Finally, our AI system is inherently a blackbox which would likely be replacing an interpretable
scheduling heuristic. This would limit any user or administrator’s ability to audit decisions around
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why certain patients were recommended for intervention. As with any potential deployment of a
blackbox system to a domain that affects the allocation of resources to humans, system designers
should be acutely aware of the balance between their needs to be able to perform audits vs. their need
for optimization.
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Appendix

7 Proof of Indexability

We give the proof assuming forward threshold policies are optimal, and note where relevant how the
proof also works for reverse threshold optimal policies.
Fact 1. For two non-concurrent, increasing, linear functions f1(m) and f2(m) and two points
m1,m2, such that m1 ≤ m2, if f1(m1) ≤ f2(m1) and f1(m2) ≥ f2(m2), then df1

dm ≥
df2
dm .

Additionally, if f1(m1) < f2(m1) and f1(m2) ≥ f2(m2), then df1
dm > df2

dm .

Proof. We now start proving the theorem by assuming that forward belief threshold policies are
optimal. Let b∗th(m) denote the threshold corresponding to the optimal threshold policy for a given
m. To show indexability, we must show that if a belief state b is passive, i.e., b > b∗th(m1), for some
m1, then it is also passive, i.e., b > b∗th(m2), for all m2 ≥ m1.

In our problem, we have 2T belief states which, for a forward threshold policy, can be arranged in
a descending order of their belief values: B := {b2T , b2T−1, . . . , bi, . . . , b1}.2 A forward threshold
policy is then any real value bth which splits B into a passive set P = {bi : bi > bth ∀bi ∈ B}
and active set C = {bi : bth ≥ bi ∀bi ∈ B}. Note that all values of bth such that bi+1 ≥ bth > bi
∀i ∈ 1, . . . , 2T correspond to the same threshold policy. Thus there are only 2T + 1 unique
threshold policies possible corresponding to the 2T + 1 such belief regions marked by points in
B. Let Π = {π2T+1, π2T , . . . , π1} denote these unique possible threshold policies arranged in a
decreasing order, where πi ≥ πj implies b∗th(πi) ≥ b∗th(πj) where b∗th(πi) is the optimal belief
threshold associated with πi.3 Thus the threshold policy πi would follow: bi > b∗th(πi) ≥ bi−1
∀i ∈ 1, . . . , 2T + 1, where b0 := −∞ and b2T+1 :=∞. Note that in a policy πi, if for a belief state
b, the optimal action is passive, then under a policy πj , the optimal action at b is also passive ∀j ≤ i
because b∗th(πi) ≥ b∗th(πj). Thus to prove indexability, it is sufficient to show that:

∀m1,m2 such that m1 ≤ m2,

if π∗(m1) = πi and π∗(m2) = πj , then
=⇒ i ≥ j

(9)

where π∗(m) denotes the optimal threshold policy at subsidy m.

Lemma 1. Let m∗i be the infimum among all m’s for which π∗(m) = πi. Then, the infimum is
achievable (i.e., π∗(m∗i ) = πi) and moreover m∗2T+1 < m∗2T < ... < m∗1.

Proof. We prove this using induction. Consider the base case: m∗2T+1 < m∗i ∀ i < 2T + 1. When
m→ −∞, the optimal action would clearly always be to act to avoid accruing large negative reward.
So π2T+1 would be the optimal policy for m→ −∞ and clearly the base case is true.

For the inductive case, assume the hypothesis, m∗2T+1 < ... < m∗t+1 < m∗i ∀i < t + 1. Let m∗t
be the infimum among all m’s for which π∗(m) = πt. We must show: (1) m∗t < m∗i ∀i < t; (2)
π∗(m∗t ) = πt (i.e., the infimum is achievable). For convenience, we denote L = {πt, πt−1, ...π1} as
the set of “lower-side" polices and U = {π2T+1, π2T , ...πt+1} as the set of “upper-side" policies.

As m is increased beyond m∗t+1, let m′ be the infimum value among all m’s whose optimal policy is
from L = {πt, πt−1, ...π1} (note, the definition of m′ is different from m∗t since at this point we do
not know whether the smallest m’s optimal policy is πt or some πi with i < t yet). That is, either
the optimal threshold policy at m′ is from L (when the infimum is achievable) or there exists an
infinite sequence {m̄l}∞l=1 that converges from the right side to m′ (i.e., m̄l ≥ m′ for all s) and the
optimal policy for any m̄l is from policy set L (when the infimum is not achievable). For notational
convenience, we will think of the former achievable case also as that there is a sequence {m̄l}∞l=1

2For simplicity, this assumes the starting belief is equal to the belief at the head of one of the chains, i.e.,
P a
1,1 or P a

0,1. However, we could add to the set B another T belief states corresponding to a chain that starts
from any arbitrary belief and evolves for T passive actions. These new states could be ordered appropriately
within B and the rest of the proof would follow unchanged.

3For reverse threshold optimal processes, simply arrange B and Π in ascending order of belief. The rest of
the proof follows similarly.
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that converges to m′ and the optimal policy for any m̄l is from L (letting all m̄l = m′ will do). In
fact, a stronger conclusion holds. That is, we can choose an infinite-length sequence {m̄l}∞l=1 such
that the optimal policy for each m̄l will be the same. This simply follows from the fact that {m̄l}∞l=1
has infinite length, and their optimal policy is from a finite set L. So some policy from L must be
optimal for infinitely many of m̄l’s. Therefore, we shall assume that m̄l → m′ from the right side
and the optimal policy for each m̄l is some π̄ ∈ L.

Our main claim is that for subsidy m′, the passive action and active action must both be optimal at
state bt. Therefore, by definition, this implies the threshold policy πt is optimal for m′. We thus
have m∗t = m′, m∗i > m∗t ∀i < t, and moreover πt is indeed optimal for m∗t (i.e., the infimum is
achievable). This concludes the induction proof. The remainder of this proof will be devoted to prove
this claim.

By definition of m′, there exists a sequence {mu}∞u=1 that converges to m′ from the left side
(i.e., mu < m′ for all t) and moreover the optimal policy for any mu is from the policy set
U = {π2T+1, π2T , ...πt+1}. Similar to the above reasoning, we shall choose the sequence {mu}∞u=1
such that their optimal policy is the same π ∈ U .

We now prove that the passive action and active action must both be optimal at state bt for m′.
Assume, for the sake of contradiction, that the optimal action at bt for subsidy m′ is passive and that
the active action is not optimal (the other case where the optimal action is active follows a similar
contradiction argument). That means the optimal policy for m′ has a threshold b∗th(m′) < bt and
thus π∗(m′) ∈ L. Moreover, since the active action is not optimal for bt, π must not be optimal for
m′ and thus achieves strictly less reward than π∗(m′). Since mu → m′, we thus have

lim
u→∞

Vmu
(π) = Vm′(π) < Vm′(π(m′)),

where the last inequality uses the fact that π is sub-optimal for m′ because the active action is strictly
sub-optimal for bt. On the other hand,

Vm′(π(m′)) = lim
u→∞

Vmu
(π(m′)) ≤ lim

u→∞
Vmu

(π)

These two inequalities contradict each other. This concludes our proof of the lemma.

Let πi be the optimal policy at some m1.

=⇒ m∗i ≤ m1

=⇒ m∗j < m∗i ≤ m1 ∀j > i using Lemma 1

Let Vπ(m, b) be the discounted reward of policy π at arbitrary state b as defined in Eq. 2 of the main
text. Then for any Vπi(m, b) and Vπj (m, b) such that j > i we have:

Vπi
(m∗j , b) < Vπj

(m∗j , b) (πj is optimal at m∗j ) (10)

Vπi(m
∗
i , b) ≥ Vπj (m∗i , b) (πi is optimal at m∗i ) (11)

m∗j < m∗i if j > i (12)

=⇒ dVπi

dm
>
dVπj

dm
∀j > i (13)

Where Eq. 10 is a strict inequality as implied by Lemma 1 and Eq. 13 follows from Fact 1 and the
value function’s linear dependence on m (whether discounted or average reward criterion). We now
claim that ∀mj > m∗i , if πj is optimal for mj then we must have j ≤ i. Towards a contradiction,
assume j > i. Then similar to the above equations, we have the following:

Vπi
(mj , b) ≤ Vπj

(mj , b) (πj is optimal at mj) (14)

Vπi
(m∗i , b) ≥ Vπj

(m∗i , b) (πi is optimal at m∗i ) (15)

m∗i < mj (16)

=⇒ dVπi

dm
≤ dVπj

dm
∀j > i (17)

Where Eq. 17 follows from Fact 1 and the value function’s linear dependence on m (whether
discounted or average reward criterion). which contradicts Eq. 13. Therefore, our claim holds. From
9, that implies indexability.
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8 Technical Condition for Forward Threshold Policies to be Optimal

We restate Eq. 2 here:

Vm(b) = max

{
m+ b+ βVm(τ(b)) passive
b+ β(bVm(P a1,1) + (1− b)Vm(P a0,1)) active

where τ(b) := τ1(b) from Eq. 1. Simplified, τ(b) is simply a linear function of b given by the
expression

τ(b) = bP p1,1 + (1− b)P p0,1
= (P p1,1 − P p0,1)b+ P p0,1

(18)

We will start by stating two facts, then proving three useful technical lemmas.

Fact 2. d(τ(b))
db = (P p1,1 − P p0,1) ≤ 1.

Fact 3. ∀b, b′ s.t. b ≥ b′, τ(b) ≥ τ(b′).

Facts 2 and 3 follow from Eq 18.
Lemma 2. Vm(b1)− Vm(b2) ≥ b1 − b2,∀b1, b2 s.t. b1 > b2

Proof. We will proceed via induction, where the base case will be a one-step value function. Then
we will show that the t-step value function assumption implies the t+1-step inductive value function
hypothesis. In the base case the value function equals only the one-step immediate reward. It is
sufficient to compare the value functions V 1

m(b1) and V 1
m(b2) element-wise, since if the true optimal

action for one of the value functions is passive and the other active, the bound can still be established
by flipping the action of one of the value functions as needed. This gives:

Base case V 1
m(b1)− V 1

m(b2) =

m+ b1 − (m+ b2) = b1 − b2 passive (19)
b1 − b2 = b1 − b2 active (20)

is clearly satisfied. Now assume V tm(b1)− V tm(b2)) ≥ b1 − b2. Then V t+1
m (b1)− V t+1

m (b2)

Case 1 (both passive):

= m+ b1 + βV tm(τ(b1))− (m+ b2 + βV tm(τ(b2)))

= b1 − b2 + β
(
V tm(τ(b1))− V tm(τ(b2))

)

≥ b1 − b2 + β(τ(b1)− τ(b2))

≥ b1 − b2

(21)

Case 2 (both active):

= b1 − b2 + β
(

(b1 − b2)V tm(P a1,1) + (b2 − b1)V tm(P a0,1)
)

= b1 − b2 + β
(

(b1 − b2)(V tm(P a1,1)− V tm(P a0,1))
)

= (b1 − b2)(1 + β(V tm(P a1,1)− V tm(P a0,1))

≥ (b1 − b2)(1 + β ∗ 0)

= (b1 − b2)

(22)

Corollary 1. Vm(b) is an increasing function in b, i.e., Vm(b) ≥ Vm(b′), ∀b, b′ s.t. b ≥ b′.

Proof. The proof follows from Lemma 2 by setting b1 = b and b2 = b′.

Lemma 3. Vm(b1)− Vm(b2) ≤ b1−b2
1−β ,∀b1, b2 s.t. b1 > b2
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Proof. Proceed by induction again. The base case Vm(b1)− Vm(b2) =

m+ b1 − (m+ b2) = b1 − b2 ≤
b1 − b2
1− β both passive (23)

b1 − b2 = b1 − b2 ≤
b1 − b2
1− β both active (24)

which are both clearly satisfied. Now assume V tm(b1)−V tm(b2) ≤ b1−b2
1−β . Then, V t+1

m (b1)−V t+1
m (b2)

Case 1 (both passive):

=
(
m+ b1 + βV tm(τ(b1))

)
−
(
m+ b2 + βV tm(τ(b2))

)

= (b1 − b2) + β
(
V tm(τ(b1))− V tm(τ(b2))

)

≤ (b1 − b2) + β

(
τ(b1)− τ(b2)

1− β

)

≤ (b1 − b2) + β

(
(b1 − b2)

1− β

)
by Fact 3

=
b1 − b2
1− β

(25)

Case 2 (both active):

=
(
b1 + β

(
b1V

t
m(P a1,1) + (1− b1)V tm(P a0,1)

))
−

(
b2 + β

(
b2V

t
m(P a1,1) + (1− b2)V tm(P a0,1)

))

= (b1 − b2) + β
((
b1 − b2

)(
V tm(P a1,1)− V tm(P a0,1)

))

≤ (b1 − b2) + β

(
(b1 − b2).

P a1,1 − P a0,1
1− β

)

≤ (b1 − b2) + β

(
(b1 − b2)

1− β

)
by Fact 2

=
b1 − b2
1− β

(26)

Lemma 4. d(Vm(b))
db ≥ 1 + βα

where, α = min{P p1,1 − P p0,1, P a1,1 − P a0,1}

Proof. Using Eq. 2, we get:

d(Vm(b))

db
=

{
1 + β d(Vm(τ(b)))

d(τ(b))
d(τ(b))
db passive

1 + β(Vm(P a1,1)− Vm(P a0,1)) active
(27)

Case 1 (passive):

= 1 + β
d(Vm(τ(b)))

d(τ(b))
(P p1,1 − P p0,1) (28)

= 1 + β lim
δ→0

Vm(τ(b) + δ)− Vm(τ(b))

τ(b) + δ − τ(b)
(P p1,1 − P p0,1) (29)

≥ 1 + β(P p1,1 − P p0,1) by Lemma 2 (30)

≥ 1 + βα (31)
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Case 2 (active):

= 1 + β(Vm(P a1,1)− Vm(P a0,1)) (32)

≥ 1 + β(P a1,1 − P a0,1) by Lemma 2 (33)

≥ 1 + βα (34)

Now we derive the technical condition for Theorem 2. In this case, proving that threshold policies
are optimal is equivalent to proving that, if it is optimal to act now, then it is optimal to act for all
later beliefs. Formally, if for a belief b, the optimal action is to act, then we must show that for a
lower b′ < b, the optimal action is also to act. To do this, we show that Theorem 2 implies that the
derivative wrt b of the passive action value function is greater than the derivative wrt b of the active
action value function:

(P p1,1 − P p0,1)(1 + β(P a1,1 − P a0,1))(1− β) ≥ P a1,1 − P a0,1 (35)

Note that since (P a1,1 − P a0,1) ≤ 1, =⇒ (1 + β(P a1,1 − P a0,1))(1− β) ≤ 1, Eq.35 itself implies that
α = P a1,1 − P a0,1. Thus, it becomes:

(P p1,1 − P p0,1)(1 + βα)(1− β) ≥ P a1,1 − P a0,1 (36)

=⇒ (P p1,1 − P p0,1)(1 + βα) ≥ Vm(P a1,1)− Vm(P a0,1) by Lemma 3 (37)

=⇒ (P p1,1 − P p0,1)
d(Vm(b))

db
≥ Vm(P a1,1)− Vm(P a0,1) by Lemma. 4 (38)

=⇒ 1 + β
d(Vm(τ(b)))

d(τb)

d(τ(b))

db
≥ 1 + β(Vm(P a1,1)− Vm(P a0,1)) by Fact 2 (39)

=⇒ d(Vm(b|a = 0))

d(b)
≥ d(Vm(b|a = 1))

d(b)
(40)

(41)

9 Technical Condition for Reverse Threshold Policies to be Optimal

Now we derive a technical condition for a reverse threshold policy. That is, a threshold policy in
which if it is optimal to be passive in the current state, then it must also be optimal to act in all later
states in the order. First we prove one more technical Lemma.

Lemma 5. d(Vm(b))
db ≤ 1 + βγ

1−β
where, γ = max{P p1,1 − P p0,1, P a1,1 − P a0,1}

Proof. Using Equation 8, we get:

d(Vm(b))

db
=

{
1 + β d(Vm(τ(b)))

d(τ(b))
d(τ(b))
db passive

1 + β(Vm(P a1,1)− Vm(P a0,1)) active
(42)

Case 1 (passive):

= 1 + β
d(Vm(τ(b)))

d(τ(b))
(P p1,1 − P p0,1) (43)

= 1 + β lim
δ→0

Vm(τ(b) + δ)− Vm(τ(b))

τ(b) + δ − τ(b)
(P p1,1 − P p0,1) (44)

≤ 1 +
β

1− β (P p1,1 − P p0,1) by Lemma 3 (45)

≤ 1 +
βγ

1− β (46)
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Case 2 (active):

= 1 + β(Vm(P a1,1)− Vm(P a0,1)) (47)

≤ 1 +
β

1− β (P a1,1 − P a0,1) by Lemma 3 (48)

≤ 1 +
βγ

1− β (49)

Now to give a condition under which reverse threshold policies are optimal. Formally, if for a belief
b, the optimal action is to be passive, then we must show that for a lower b′ < b, the optimal action is
also to be passive. We do this by showing that the Theorem 3 statement implies that the derivative
wrt b of the passive value function is less than the derivative wrt b of the active action value function:

(P p1,1 − P p0,1)(1 +
β(P a1,1 − P a0,1)

1− β ) ≤ P a1,1 − P a0,1 (50)

Note that the Eq. 50 itself implies that γ = P a1,1 − P a0,1, thus giving:

(P p1,1 − P p0,1)(1 +
βγ

1− β ) ≤ P a1,1 − P a0,1 (51)

=⇒ (P p1,1 − P p0,1)(1 +
βγ

1− β ) ≤ Vm(P a1,1)− Vm(P a0,1) by Lemma 2 (52)

=⇒ (P p1,1 − P p0,1)
d(Vm(b))

db
≤ Vm(P a1,1)− Vm(P a0,1) by Lemma 5 (53)

=⇒ 1 + β
d(Vm(τ(b)))

d(τb)

d(τ(b))

db
≤ 1 + β(Vm(P a1,1)− Vm(P a0,1)) by Fact 2 (54)

=⇒ d(Vm(b|a = 0))

d(b)
≤ d(Vm(b|a = 1))

d(b)
(55)

(56)

10 Threshold Conditions for Average Reward Case

First we define the concept of value boundedness [8]:

Definition 4 (Value Boundedness). For a given MDP, consider a value function Vβ(b), states b ∈ B
and some index state z ∈ B. Then an MDP is value bounded if for a constant M and function M(b):

M(b) < Vβ(b)− Vβ(z) < M (57)

We now prove that Thm. 2 and Thm. 3 hold respectively under the average reward criterion as β −→ 1
using Dutta’s Theorem as follows [8]. Consider an MDP that is value bounded. Let πβ(·) be a
stationary optimal policy for the discounted MDP. (1) Suppose πβ(·) −→ π pointwise, as β −→ 1.
Then π is a stationary optimal policy for the average reward criterion. (2) Furthermore, given state
ordering O, if for all discounted optimal policies πβ(b), O(b′) ≥ O(b) implies πβ(b′) ≥ πβ(b) (i.e.,
threshold policies are optimal), then any sequence of discounted optimal policies converge to an
average optimal policy as β −→ 1.

(2) and (1) together imply that any MDP that admits threshold optimal policies under discounted
reward criteria also admits threshold optimal policies under average reward criteria. By construction,
any MDP that satisfies Thm. 2 or Thm. 3 admits threshold optimal policies under the discounted
reward criterion. Therefore, to prove that those conditions hold under the average reward criterion as
β −→ 1, we need only prove that any CoB is value bounded.

Theorem 4. Any Collapsing Bandit is value bounded.
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11 Example When the Myopic Policy Fails

We present an example in which the myopic baseline is barely better than No Calls, while Threshold
Whittle is optimal. Consider the system with N = 2 and k = 1 and the transition probabilities shown
in Fig. 7a.

P p,1 =


0.97 0.03
0.03 0.97

�
P a,1 =


0.96 0.04
0.01 0.99

�

P p,2 =


0.25 0.75
0.03 0.97

�
P a,2 =


0.23 0.77
0.01 0.99

�
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Figure 7: For the example transition matrices, Myopic performs worse than random, while Threshold
Whittle is nearly optimal.

Fig. 7b shows how various policies perform on these two processes. The myopic policy is worse than
random and threshold Whittle is nearly optimal. The myopic policy always acts on process 2 because
the immediate reward it considers, (bt+1|a = 1)− (bt+1|a = 0) is marginally higher for process 2
than process 1. However, process 1 is better to pull in the long run because process 2 has a large P p0,1,
making it self-correcting, meaning the process is likely to become adhering quickly even without an
intervention. However, process 1 has a very small P a0,1 and P p0,1 and is thus difficult to revive from
the bad state even with an intervention, making it important to keep intervening to stop the process
from ever entering the bad state.

The following analysis shows that the myopic policy always prefers to pull arm 2:

For process 1:

(bt+1|a = 0) = 0.97.bt + 0.03.(1− bt) = 0.94.bt + 0.03

(bt+1|a = 1) = 0.99.bt + 0.01.(1− bt) = 0.95.bt + 0.04

Thus, ∆bt = (bt+1|a = 1)− (bt+1|a = 0) = 0.01 + 0.01.bt < 0.02

Similarly, for process 2:
∆bt = 0.02

The myopic policy chooses the arm with the greater ∆bt.

12 Learning Online

So far we assumed that all transition probabilities are known. However, in a real deployment, the
transition probabilities of processes would be unknown at the start, and it would be desirable to learn
the transition probabilities online in tandem with planning. To develop an online planning regime for
our algorithm, we use the tuberculosis medication adherence monitoring domain from the main text
as a case study and motivating example.

We implement a Thompson sampling-based learning method [32], which is a heuristic which has
been shown to work well in practice and has been frequently used in the bandit literature [14]. In
Thompson sampling, we sample from a posterior distribution over the estimated parameters and use
the samples for planning. This allows for “sub-optimal" actions to be taken periodically, building
exploration implicitly into planning. Then, as arms are pulled we use the observations to update our
posterior distribution. We maintain a Beta distribution posterior over the parameters of each row of a
patient’s transition matrix and sample from it each day to generate a matrix with which the system
can plan for that round.

Additionally, we consider two specific features of the TB medication adherence monitoring domain
that can be used to accelerate learning with Thompson sampling. First, it is reasonable to assume that
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patients (processes) might remember some number of previous days of their medication adherence
behavior. Thus, when the agent pulls an arm, the arm may reveal state observations for some number
of previous days which we call buffer length. The larger the buffer length, the faster learning will
converge since more observations are obtained for updating the posterior. We parameterize buffer
length and evaluate its effect on learning and planning in experiments. Second, we verify with real
data that virtually all patients adhere to the natural constraints on the transition probabilities given in
Section 3. We exploit this known structure on the transition probabilities – i.e., that processes tend
to degrade when passive and that interventions must have positive effect – to identify a constrained
probability space from which we would like to sample when learning online. We implement a
version of Thompson sampling called constrained Thompson sampling which samples from this
joint, constrained probability space via rejection sampling.

On-demand index computation algorithm. When we learn online, the transition matrices for a
process change every day, and thus pre-computing the Whittle indices for every belief state as in
Alg. 1 is inefficient. We can address this by identifying and solving only the indifference equation
that is relevant to the current state of the process. We use the insight that for a threshold of Xi on the
current chain i, the corresponding threshold Xj on chain j would be the state with the largest belief
lower than b(Xi), i.e., Xj = min

u
{u : bj(u) < b(Xi)}. The Whittle index for Xi is then obtained by

solving for m : J
(Xi,Xj)
m = J

(Xi+1,Xj)
m . These computations are repeated every day yielding overall

complexity of O(|Ω|T 2) per process.
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Figure 8: (left) Constrained Thompson sampling improves learning. (right) buffer lengths of 4–7
perform well for various values of k/N , using constrained Thompson sampling. TW_X is the
on-demand index algorithm run in tandem with Thompson sampling and a buffer length of X.

Fig. 8 (right) evaluates the impact of varying buffer lengths for various ratios of k/N . Note that in
these experiments, Oracle fully observes states, but must still learn transition probabilities online.
Critically, we see that even when simulated patients report 4–7 observations per arm-pull, the
performance is close to that of the non-Oracle learning upper bound (buffer length=∞) for any k/N .
This is a key consideration for deployment in a medication adherence context: patients need only
remember their last 4–7 doses on average for our approach to be nearly effective as possible in the
TB context.

Fig. 8 (left) compares the performance of learning policies with and without constrained Thompson
sampling for k/N = 25%. All policies benefit from the constrained sampling approach, suggesting
that imposing our knowledge of the transition probability constraints was beneficial to learning.

13 Sensitivity Analysis

In Fig. 9, we investigate Threshold Whittle’s performance relative to the choice of parameters used to
perturb the real data from the TB medication adherence domain. All the plots show that Threshold
Whittle’s performance is robust to the choice of parameters.

20



0.0 0.2 0.4
Perturbation, δ1

25

50

75

100

In
te

rv
en

ti
on

b
en

efi
t

(%
)

0.0 0.2 0.4
Perturbation, δ2

40

60

80

100

0.0 0.2 0.4
Perturbation, δ3

25

50

75

100

Threshold Whittle Myopic Random

0.0 0.2 0.4
Perturbation, δ4

40

60

80

100

Figure 9: Performance of Threshold Whittle is robust to perturbation of the transition matrix parame-
ters. Note that 100% corresponds to the performance of Threshold Whittle for this plot only.
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Figure 10: (a) Threshold Whittle-computed indices vs. reachable beliefs for 10 randomly sampled
reverse threshold optimal processes (one line per process). These indices tend to increase in belief, as
expected for reverse threshold optimal processes according to the proof in Appendix 7. (b) Threshold
Whittle-computed indices vs. reachable beliefs for 10 randomly sampled forward threshold optimal
processes (one line per process). These indices always decrease in belief, as expected for forward
threshold optimal processes according to the proof in Appendix 7.

14 Threshold Whittle’s Performance on Reverse Threshold Optimal
Processes

Here we investigate why Threshold Whittle demonstrates near-optimal performance even on reverse-
threshold-optimal processes. We randomly sample forward and reverse threshold optimal processes,
checked with Thm. 2 and Thm. 3, respectively, using β = 0.95, then compute their indices with
the Threshold Whittle algorithm. Figures. 10a and 10b show a few samples of these trajectories
for reverse and forward threshold optimal processes, respectively. Via similar arguments from the
proof in Appendix 7, it can be shown that the true Whittle indices for reverse (forward) threshold
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optimal processes should always be increasing (decreasing) in belief. Fig. 10a shows that for such
reverse threshold optimal processes, the indices computed by Threshold Whittle do tend to increase
in belief as expected, which may lead to Threshold Whittle’s good performance even though it is not
guaranteed to be optimal on those processes. (And for completeness, Fig. 10b shows that for forward
threshold optimal policies, the indices computed by Threshold Whittle always decrease in belief as
expected.)
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