
Blocking Adversarial Influence in Social
Networks

Feiran Jia1(B), Kai Zhou1, Charles Kamhoua2, and Yevgeniy Vorobeychik1

1 Department of Computer Science and Engineering,
Washington University in St. Louis, St. Louis, MO 63130, USA

{feiran.jia,zhoukai,yvorobeychik}@wustl.edu
2 Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783, USA

charles.a.kamhoua.civ@mail.mil

Abstract. While social networks are widely used as a media for infor-
mation diffusion, attackers can also strategically employ analytical tools,
such as influence maximization, to maximize the spread of adversarial
content through the networks. We investigate the problem of limiting
the diffusion of negative information by blocking nodes and edges in
the network. We formulate the interaction between the defender and
the attacker as a Stackelberg game where the defender first chooses a
set of nodes to block and then the attacker selects a set of seeds to
spread negative information from. This yields an extremely complex bi-
level optimization problem, particularly since even the standard influence
measures are difficult to compute. Our approach is to approximate the
attacker’s problem as the maximum node domination problem. To solve
this problem, we first develop a method based on integer programming
combined with constraint generation. Next, to improve scalability, we
develop an approximate solution method that represents the attacker’s
problem as an integer program, and then combines relaxation with dual-
ity to yield an upper bound on the defender’s objective that can be
computed using mixed integer linear programming. Finally, we propose
an even more scalable heuristic method that prunes nodes from the con-
sideration set based on their degree. Extensive experiments demonstrate
the efficacy of our approaches.

Keywords: Influence maximization · Influence blocking · Stackelberg
game

1 Introduction

The problem of diffusion over social networks has received considerable prior
attention in the literature, both from the perspective of promoting diffusion (the
so-called influence maximization problem) as well as in preventing its spread (the
influence blocking problem). The influence maximization problem aims to select
a subset of nodes on a network to maximize the overall spread of influence, such
as adoption of a product or an opinion [6,10]. Influence blocking presumes that a
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diffusion process is spreading, typically either from a set of known nodes, or from
nodes selected according to some known distribution, with the goal of blocking
its path through either a select set of nodes or edges [12–15,30,33].

In many settings, influence maximizers are malicious parties, and our goal
is to limit their overall influence. For example, in cybersecurity, influence max-
imization may correspond to the spread of malware on the network, while in
criminology we may be concerned about the spread of criminal influence (such as
promoting membership in gangs or terrorist organizations). It is natural in these
settings to consider the problem of adversarial influence blocking (AIB), where
a defender can first block (inoculate) a set of nodes or edges, and the adversary
subsequently unleashes an influence maximization process. In the cybersecurity
setting, we may impose use restrictions on a subset of computing devices, or
even island these from the internet.

We model the resulting problem as a Stackelberg security game in which the
defender first chooses (deterministically) which subset of nodes to block, and
the attacker then selects a subset of seed nodes to begin network diffusion. The
adversary’s goal is to maximize overall influence, whereas the defender aims to
minimize it. Note that this problem is significantly more difficult than the tradi-
tional influence blocking problem, since we are now allowing the choice of seeds
to be adversarial, and to condition on the nodes we choose to block. Despite the
extensive prior research on both influence maximization and influence blocking
problems and their many variants, however, no general effective solution exists
for the adversarial influence blocking problem.

The AIB problem is an extremely challenging bi-level optimization prob-
lem for a host of reasons. First, even computing influence for general influence
measures is difficult [4,5]. Moreover, influence maximization is hard even if we
assume that we can use a black-box (e.g., simulations) to compute expected
influence, and it’s only a subproblem. To address these technical challenges, we
first approximate influence maximization in the lower-level problem by a maxi-
mum node domination problem. While this problem is still NP-Hard [24], it can
be solved using integer linear programming (ILP). We make use of this, together
with a constraint generation algorithm, to develop the first practical solution
to AIM. To increase scalability, we develop an approximation based on a relax-
ation of the attacker’s ILP combined with duality, which yields a single-level
mixed-integer linear program for the defender to solve. We further improve the
scalability of the resulting approach by using simple node pruning heuristics
(removing a subset of nodes from consideration in the optimization problem).
Through extensive experiments, we show that our approach is more effective
for computing influence blocking nodes than state of the art alternatives for a
variety of influence measures, including domination, independent cascades, and
linear threshold models.

Related Work. Influence maximization (IM) is a classical problem in social net-
work analysis, which aims at identifying a set of seeds to maximize the spread of
influence under an information diffusion model, such as the independent cascade
(IC) and linear threshold (LT) model. It has been shown that identifying such
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a seed set is NP-hard and proposed a greedy algorithm with provable guaran-
tees [10].

On the contrary, a host of works consider the influence blocking problem
of limiting the spread of information, typically through blocking the paths of
diffusion, or equivalently modifying the underlying network structure. Some of
them considered removing the edges, with the goal of minimizing the averaged
influence of all nodes by treating each node as a seed independently [13–15], or
minimizing the overall influence of a known set of sources [12]. Most of these
works proposed heuristic algorithms, and experimentally demonstrated the effi-
cacy under the LT or/add IC models. An exception is that the objective function
under the LT model is supermudular, resulting in scalable and effective algo-
rithms [11,12]. There are also other works considering removing nodes from the
network and proposed several heuristic approaches based on the node properties,
such as out-degrees [1,3,25] and betweenness centrality [33]. However, all these
works consider a rather static scenario, where the initial set of seeds is known
and fixed, which is fundamentally different from ours.

Besides modifying the network structure, an orthogonal line of works [2,9]
consider the problem of spreading positive information as the best response to
limit the eventual negative influence caused by the static adversary. Other works
focus on the game-theoretic version where both the players choose to propagate
their influence strategically and simultaneously [26–28]. Several following works
model such a setting as games between the two sources in various application
scenarios such as the defending against misinformation in elections [32] and
protecting assets in an interdependent setting [29].

Our approach relies on approximating the influence of maximization as the
Maximum Node Domination problem, which we term as k-MaxVD. In a graph,
the set of dominated nodes of a node i includes i and its neighbors. The Node
Domination Set [8] of a node-set U is then the union of all the dominated nodes
of every node in U . The k-MaxVD problem is then to find the set U of k nodes
such that the size of its Node Domination Set is maximized. k-MaxVD is proved
to be NP-hard, and a simple greedy algorithm achieves an approximation ratio
of (1 − 1/e) [24].

2 Problem Formulation

In this section, we formulate the adversarial influence blocking problem as a
Stackelberg game where the attacker solves the influence maximization prob-
lem after observing a network modified by the defender. To make it tractable,
we approximate the attacker’s problem as the maximum node domination (k-
MaxVD) problem.

Stackelberg Game Model. We consider a graph G = (V,E), with a set of n
nodes V and a set of m edges E. A defender selects a set of nodes SD ∈ V
to block (remove from the graph) aiming at minimizing the negative influence
caused by the attacker. We use G(SD) to denote the modified graph after nodes
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in SD are blocked. After observing G(SD), an attacker selects an initial set of
seeds SA to maximize the influence under a given influence diffusion model.
Since the attacker’s strategy is conditioned on the choice of SD, we represent
it as a function g(SD). The interaction between the defender and the attacker
is formulated as a Stackelberg game with the defender as the leader and the
attacker the follower. To formalize, we denote the utilities of the defender and
the attacker as UD(SD, SA) and UA(SD, SA), respectively. Our goal is thus to
seek the Stackelberg Equilibrium (SE) of the game, which is defined as follows:

Definition 1. A strategy profile (S∗
D, g∗(SD)) forms a Stackelberg Equilibrium

of the game if it satisfies two conditions:

– The defender plays a best response:

UD(S∗
D, g∗(S∗

D)) ≥ UD(SD, g∗(SD)),∀SD.

– The attacker plays a best response to SD:

UA(SD, g∗(SD)) ≥ UA(SD, g(SD)),∀g, SD.

In particular, we focus on approximating a Strong Stackelberg equilibrium (SSE),
in which the attacker breaks ties (if any) in the defender’s favor.

Next, we define the utilities for both players in terms of the results of
adversarial influence on the network. Specifically, the influence of a seed set
SA chosen by the attacker is the total number of influenced nodes resulting
from an exogenously specified diffusion model, denoted by σ(SA|G(SD)). The
particular game we consider is a zero-sum game in which the attacker’s util-
ity is the influence σ(SA|G(SD)); formally, UD(SD, SA) = −σ(SA|G(SD)) and
UA(SD, SA) = σ(SA|G(SD)). A key concept in this model is the influence maxi-
mization problem, InfluMax(G), which takes a graph G as input and outputs an
optimal set of seeds; this is the attacker’s problem. Consequently, finding the
SSE of the game involves solving the following bi-level program:

min
SD

σ(S∗
A|G(SD))

s.t. |SD| ≤ kD

S∗
A = InfluMax(G(SD))

s.t. |SA| ≤ kA, (1)

where kA and kD are budget constraints on SA and SD, the sets of nodes the
attacker can influence, and the defender can block (remove from the graph),
respectively.

It is evident that the bi-level program (1) is quite intractable, first because
common influence measures, such as using the independent cascades model, are
intractable to compute, second because influence maximization is itself NP-Hard,
and third because both the outer and inner optimization problems are non-
convex. Furthermore, given that there are many competing models of diffusion
of influence on networks, there is even ambiguity in how to best instantiate the
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influence function σ(SA|G(SD)). For these reasons, we next propose an approxi-
mation of the influence functions that introduces considerably more structure to
the problem, and that can be a proxy for many conventional influence functions
in the literature.

Approximating the Influence. Solving the previous bi-level program involves solv-
ing InfluMax(G(SD)) given any SD. However, finding the optimal seed set SA that
maximizes σ(SA|G(SD)) is NP-hard for essentially any common influence mea-
sure [10]. In fact, even mathematically formulating InfluMax(G(SD)) is not easy
– the typical approaches treat InfluMax(G(SD)) as a black box and identify the
optimal SA through simulation. To make our problem more tractable, we approx-
imate σ(SA|G(SD)) as the cardinality of the dominated node set with respect to
SA, denoted by D(SA|G(SD)). Specifically, given a node v ∈ V , its dominated
node set is defined as the v and its neighbors in the graph, i.e., Dv = v ∪ N(v),
where N(v) is the set of neighbors of v. Then the dominated node set of SA is
defined as

D(SA|G(SD)) = ∪v∈SA
Dv = {u|∃v ∈ SA, s.t.(u, v) ∈ E},

and we approximate the influence function using the cardinality of this set:
σ(SA|G(SD)) ≈ |D(SA|G(SD))|. As a result, the influence maximization problem
InfluMax(G(SD)) is approximated as the maximum node domination problem,
which is to find the node set SA that maximizes D(SA|G(SD)). The resulting
bi-level problem we aim to solve is

min
SD

|D(S∗
A|G(SD))|

s.t. |SD| ≤ kD

S∗
A = arg maxSA

|D(SA|G(SD))|
s.t. |SA| ≤ kA. (2)

The solution to problem (2) then becomes the approximate solution to prob-
lem (1). We note that approximation here is not formal; rather, we use exper-
iments below to show its effectiveness in comparison with a number of alter-
natives. Moreover, node domination is itself a natural influence measure (as a
generalization of a node’s degree centrality).

3 Solution Approach

In this section, we present several approaches for computing the defender’s opti-
mal strategy. To begin, we rewrite the bi-level problem as follows. Denote the
defender’s strategy as a binary vector x = {0, 1}n, where xi = 1 means that the
defender chooses to block node vi and xi = 0 otherwise. Similarly, let y = {0, 1}n

denote the attacker’s strategy, where yi = 1 means that the attacker selects vi

as a seed and yi = 0 otherwise. Then D(SA|G(SD)) can be written as a function
of x and y:
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F (x,y) =
∑

vi∈V

(1 − xi) · min{1,
∑

vj∈NI(vi)

yj} (3)

where N I(vi) = vi ∪ N(vi). As a result, the defender’s problem (2) can be
rewritten as

min
x

max
y

F (x,y)

s.t. yi ≤ 1 − xi, xi, yi ∈ {0, 1}, ∀i,
n∑

i=1

xi ≤ kD,

n∑

i=1

yi ≤ kA, (4)

where the first constraint ensures that the node blocked by the defender cannot
be selected as a seed by the attacker.

Next, we begin by developing a mixed-integer linear programming formu-
lation for the attacker’s problem, and subsequently make use of it to obtain
both optimal and approximately optimal, but more scalable, solutions to the
defender’s influence blocking problem.

3.1 Computing Attacker’s Best Response

We begin with the attacker’s problem. Fixing the defender’s decision x, the
attacker seeks to maximize the objective F (x,y) in (3). We linearize each non-
linear term min{1,

∑
vj∈NI(vi)

yj} by replacing it with one auxiliary continuous
variable ti ∈ [0, 1] and one extra inequality ti ≤ ∑

vj∈NI(vi)
yj . Consequently,

the attacker’s problem can be formulated as a Mixed Integer Linear Program
(with fixed x), denoted as BR-MILP:

max
y,t

∑

vi∈V

(1 − xi) · ti

s.t. yi ≤ 1 − xi, i = 1, 2, · · · , n
∑

vi∈V

yi ≤ kA, yi ∈ {0, 1}

ti ≤
∑

vj∈NI(vi)

yj , 0 ≤ ti ≤ 1 (5)

The solution y∗ to this MILP corresponds to the optimal strategy of the attacker
given the defender’s strategy x.

3.2 Optimal Influence Blocking: A Constraint Generation Approach

We now propose a way to compute the exact solution to the bi-level problem (4)
by using a constraint generation method. The defender’s optimal problem can
be alternatively expressed as the following optimization problem:
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min
x,t

n∑

i=1

ti (6)

s.t.
∑

vi∈V

xi ≤ kD, xi ∈ {0, 1} (7)

ti = min{1 − xi,
∑

j∈NI(vi)

y∗
j (1 − xj)},∀i, where (8)

y∗ = BR-MILP(x). (9)

If we let Y denote the complete set of the attacker’s strategies, we can further
rewrite this by a very large optimization problem in which we explicitly enu-
merate all of the attacker’s actions. In this problem, the defender aims to find
a strategy x such that the tight upper bound of the attacker’s utility is mini-
mized. For each y ∈ Y , we can introduce the corresponding variables ti,y showing
whether node i is influenced given the attacker’s strategy y. Constraint (8) given
each y can be linearized to (12)–(14) by introducing binary variables bi,y which
indicates whether 1−xi <

∑
j∈NI(vi)

yj(1−xj). Introducing a sufficiently large
constant M allows us to further linearize all of the non-linear terms, yielding the
following:

min
x,td

UA (10)

s.t.
∑

vi∈V

xi ≤ kD, xi ∈ {0, 1} (11)

UA ≥
n∑

i=1

tdi,y,∀y ∈ Y (12)

1 − xi − M(1 − bi,y) ≤ ti,y ≤ 1 − xi,∀y ∈ Y, ∀i (13)
∑

j∈NI(vi)

yj(1 − xj) − Mbi,y ≤ ti,y ≤
∑

j∈NI(vi)

yj(1 − xj),∀y ∈ Y, ∀i (14)

However, the MILP above is clearly intractable since the set Y is combi-
natorial. To tackle the computational issue, we develop a constraint generation
algorithm. The key to this algorithm is to replace Y with a small subset of
attacker strategies Ŷ ⊂ Y , along with all of the associated constraints, so that
the modified MILP above becomes DEF-MASTER(Ŷ ), in which we can specify
an arbitrary subset of attacks Ŷ . Now we can start by an arbitrary small set
of attacks, and interleave two steps: solve DEF-MASTER(Ŷ ) using the set of
attacks Ŷ generated so far to obtain a provisional solution x for the defender,
and identify a new attack y that is a best response to x. We can stop this as soon
as the best response of the attacker no longer improves their utility compared
to the solution obtained by DEF-MASTER(Ŷ ). Algorithm 1 fully formalizes the
proposed constraint generation procedure, where is the set of optimal BR-MILP
is just the mixed-integer linear programming approach for identifying the best
response of the attacker presented in formulation (5). Note that we can uti-
lize the returned influence value tay of BR-MILP to prune irrelevant constraints
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of DEF-MASTER. Specifically, we only generate constraints (13)–(14) for each
influenced node (tai,y = 1). For the node with tai,y = 0, we add the constraint
tdi,y = 0, because given an attacker’s strategy y, the uninfluenced node will not
be influenced no matter what x is. Consequently, we denote the refined master
problem by DEF-MASTER (Ŷ , T̂ a) in Algorithm 1.

Algorithm 1. Constraint Generation (CG)

1: Ŷ = ∅, T̂ a = ∅,
2: UUB

A = ∞, UUB
A = 0

3: x∗, xdef = 0
4: while UUB

A − ULB
A > gap do

5: (tay, y, UA) ← BR-MILP(xdef )

6: Ŷ = Ŷ ∪ {y}, T̂ a = T̂ a ∪ {tay}
7: if UA < UUB

A then
8: Update the upper bound UUB

A = UA

9: Update the incumbent solution x∗ ← xdef

10: (xdef , ULB
A ) ← DEF-MASTER(Ŷ , T̂ a)

11: return x∗

3.3 Approximating Optimal Influence

The constraint generation approach enables us to effectively compute optimal
influence blocking. However, it fails to scale to networks of even a moderate
size. We now propose a principled approximation approach that makes use of
a linear programming (LP) relaxation of the attacker’s problem combined with
LP duality.

Specifically, by relaxing the integer constraint on each yi, the attacker’s prob-
lem (5) becomes a linear program (LP) with variables y and t. Its dual is

min
λ0,q,α,β,γ

kAλ0 +
n∑

i=1

(1 − xi)qi +
n∑

i=1

βi +
n∑

i=1

γi

s.t. λ0 + qi + βi −
∑

vj∈NI(vi)

αj ≥ 0,

αi + γi ≥ 1 − xi,

λ0, qi, αi, βi, γi ≥ 0, i = 1, 2, · · · , n

(15)

where λ0, q, α, β, γ are the dual variables. By substituting the inner problem
with (15), the defender’s bi-level program can be reformulated as a minimization
problem with the same objective as that in (15), with the difference that x now
are variables. Finally, we can linearize the non-linear terms

∑n
i=1(1 − xi)qi as

follows. We introduce new variables wi ≥ 0 and a large constant M , such that
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wi = (1 − xi)qi, i = 1, 2, · · · , n. We further introduce linear constraints for each
wi, qi, and xi:

−M(1 − xi) ≤ wi ≤ M(1 − xi), (16)
qi − Mxi ≤ wi ≤ qi + Mxi. (17)

The full defender’s problem can thus be formulated as a MILP, which we
denoted by DEF-MILP:

min
x,λ0,q,α,β,γ,w

kAλ0 +
n∑

i=1

wi +
n∑

i=1

βi +
n∑

i=1

γi

s.t.
n∑

i=1

xi ≤ kD,

λ0 + qi + βi −
∑

vj∈NI(vi)

αj ≥ 0,∀ i

αi + γi ≥ 1 − xi, ∀ i

constraints (16−17)
xi ∈ {1, 0}, w, λ0, q, α, β, γ ≥ 0.

(18)

The optimal strategy for the defender is then the solution x∗ to (18).

3.4 Scaling up Through a Pruning Heuristic

Even finding the approximately optimal strategy for the defender above involves
solving a MILP (18), of which the number of constraints grows linearly with the
number of nodes. This is a computational bottleneck, especially when the net-
work is large. We propose a heuristic approach to deal with very large networks.
The basic idea is to limit the strategy space of the defender.

We write the DEF-MILP (18) as a function DEF-MILP (X, kA, kD, G),
where X denotes the strategy space of the defender. Our algorithm relies on
pruning some less important nodes, which significantly reduce the strategy space
X. Note that the importance of the nodes can be measured by different metrics,
such as the node degree. Our Heuristic Pruning Algorithm is presented in Algo-
rithm 2. The idea is to first sort the nodes according to some importance metric
in descending order, and then restrict the defender’s strategy space in the top-
lD nodes; that is, setting xi = 0 for the rest. Finally, we solve the MILP with
restricted strategy space. The parameter lD controls the trade-off between the
time complexity of solving the MILP and the quality of the solution.

4 Extensions

Weighted Influence Maximization. A natural extension of influence maximiza-
tion allows each node vi ∈ V to be associated with non-negative weight μi
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Algorithm 2. Heuristic Pruning Algorithm
1: procedure Pruned-MILP(kA, kD, lD, G = (V, E))
2: SortedList = SortingAlg(V )
3: Xpruned ← {0, 1}n

4: for i in SortedList[ld, n] do
5: ∀x ∈ Xpruned, fix x[i] = 0

� Limit the strategy space to top ld nodes
6: xdef ← DEF-MILP(Xpruned, kA, kD, G)
7: lastNum ← kd - calBlockedNum(xdef )
8: for i in SortedList do
9: if lastNum ≤ 0 then

10: break
11: if xdef [i] == 0 then
12: xdef [i] = 1
13: lastNum = lastNum − 1

14: return xdef

15: procedure calBlockedNum(xdef )
16: num = 0
17: for i in xdef do
18: num+ = i

19: return num

capturing its importance in the final outcome [10]. Here we denote this problem
as weighted influence maximization (WIM). They defined the weighted influence
function σμ(S) as the expected value outcomes B of the quantity

∑
vi∈B μi,

where B denotes the random set activated by the process with initial seed set
S.

To incorporate weighted influence maximization, we generalize our model by
associating a weight to each node in the objective function (3), i.e., F (x,y) =∑

vi∈V μi(1 − xi) · min{1,
∑

vj∈NI(vi)
yj}.

The inner problem of the attacker’s best response can be formulated by
modifying the objective in (5) to

∑
vi∈V μi(1 − xi) · ti.

Applying the same procedure of calculating the defense strategy of the non-
weighted version, we can formulate the defender’s optimization problem. The
procedure is briefly described as follows. First, we can directly generalize the
MILP formulation of the attacker’s best response. Next, we relax the integer
constraint on each yi and take the dual of the resulting LP. The bi-level problem
can then be reformulated as a non-linear minimization problem by replacing the
inner problem with the relaxed dual. Finally, we introduce the large number M
to linearize the non-linear term, we can get the final formulation, denoted as
DEF-WMILP, shown as follows.
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min
x,λ0,q,α,β,γ

kAλ0 +
n∑

i=1

wi +
n∑

i=1

βi +
n∑

i=1

γi (19a)

s.t. &w, λ0, q, α, β, γ ≥ 0 (19b)
∑

vi∈V

xi ≤ kD (19c)

λ0 + qi + βi −
∑

vj∈NI(vi)

αj ≥ 0,∀i (19d)

αi + γi ≥ μi(1 − xi),∀i (19e)
constraints (16)−(17) (19f)
xi ∈ {1, 0},∀i. (19g)

For the heuristic pruning algorithm Pruned-MILP, we can substitute DEF-
MILP with DEF-WMILP.

Blocking Both Edges and Nodes. The model can be further generalized by consid-
ering blocking both edges and nodes with different costs. Suppose that the cost
of blocking an edge is ce and the cost of blocking a node is cn, and the defender
chooses to block a subset of both edges and nodes given a total budget BD.
Let zij = {0, 1}, ∀(i, j) ∈ E denote the defender’s edge strategy, where zij = 1
means that the defender chooses to block edge (i, j) and zij = 0 otherwise. Then
the defender’s budget constraint becomes:

∑

vi∈V

xicn +
∑

(i,j)∈E

zijce ≤ BD (20)

Once blocking a node, it is not necessary to block the edges linked to the node.
To demonstrate this node-edge relationship, we introduce an integer variable
kij ∈ {0, 1}, ∀(i, j) ∈ E and the following linear constraints.

zij − 0.5 ≤ Mkij (21)
xi − 0.5 ≤ M(1 − kij) (22)
xj − 0.5 ≤ M(1 − kij) (23)

Given the defender’s strategy z and x, the attacker’s best response can be
modified to

max
y,t

∑

vi∈V

(1 − xi) · ti (24)

s.t.
∑

vi∈V

yi ≤ kA, yi ∈ {0, 1} (25)

yi ≤ 1 − xi,∀i (26)

ti ≤ yi +
∑

vj∈N(vi)

yj(1 − zji), 0 ≤ ti ≤ 1,∀i (27)
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Finally, taking the dual of the relaxed attacker’s problem, the defender’s problem
can be formulated as a non-linear mixed integer program:

min
x,Z,λ0,q,α,β,γ

kAλ0 +
n∑

i=1

(1 − xi)qi +
n∑

i=1

βi +
n∑

i=1

γi

s.t. w, λ0, q, α, β, γ ≥ 0
∑

vi∈V

xicn +
∑

(i,j)∈E

zijce ≤ BD

λ0 + qi + βi − αi −
∑

vj∈N(vi)

αj(1 − zij) ≥ 0,∀i

αi + γi ≥ μi(1 − xi),∀i

constraints (21)−(23)

(28)

We can linearize the non-linear terms by replacing (1 − xi)qi by introducing
a new variable wi and replacing αj(1 − zij) with bij . Then the optimal defense
strategy (x∗, z∗) can be obtained by solving the large-scale MILP (24).

min
x,Z,λ0,q,α,β,γ,b,k,w

kAλ0 +
n∑

i=1

wi +
n∑

i=1

βi +
n∑

i=1

γi (29a)

s.t. w, k, b, λ0, q, α, β, γ ≥ 0 (29b)
∑

vi∈V

xicn +
∑

(i,j)∈E

zijce ≤ BD (29c)

λ0 + qi + βi − αi −
∑

vj∈N(vi)

bij ≥ 0,∀i (29d)

αi + γi ≥ μi(1 − xi),∀i (29e)
M(1 − zij) ≥ bij ≥ −M(1 − zij),∀(i, j) ∈ E (29f)
αj + Mzij ≥ bij ≥ αj − Mzij ,∀(i, j) ∈ E (29g)
constraints (16)−(17), (21)−(23)
zij , kij ∈ {0, 1},∀(i, j) ∈ E;xi ∈ {0, 1},∀i.

5 Experiments

In this section, we test our defense approaches against several attacks and also
compare them with several defense baselines from previous works. All runtime
experiments were performed on a 2.6 6 GHz 8-core Intel Core i7 machine with
16 GB RAM. The MILP instances were solved using CPLEX version 12.10.

Data Sets. We conduct experiments on both synthetic graphs and real-world
networks.
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Fig. 1. Comparison between constraint generation and DEF-MILP in terms of runtime
(left) and the attacker’s utility (right).

– Synthetic graphs: We generate synthetic graphs from three graph mod-
els: Erdos-Renyi (ER) model [7], Watts-Strogatz (WS) model [31] generates
networks with small-world properties., and Barabasi-Albert (BA) model [31].
Specifically, each edge in the ER model is generated with probability p = 0.1.
In the WS model, each node is initially connected to 5 nodes in a ring topol-
ogy and we set the rewiring probability as 0.15. In the BA model, at each
time we add a new node with m = 3 links that attach to existing nodes.

– Real-world networks: We consider four real-world networks. The Email-
Eu-Core network [20,34] is generated using email data from a large European
research institution, which has 1,005 nodes and 25,571 edges. The Hamster-
ster friendships network [17,18] is an undirected friendship network of the
website hamsterster.com with 1,858 nodes and 12,534 edges. We also tested
on the sub-networks of a Facebook friendship network [23] and the Enron
email network [16,22], where the sub-networks are sampled by the Forest
Fire sampling method [19].

Methodology. Given a graph G, we employ a defense strategy to block kD nodes,
resulting in a modified graph GM . The attacker then uses an attack strategy
to select kA seeds to spread the influence. We then measure the utility of the
attacker under various combinations of defense and attack strategies. Specifically,
we test our proposed defense strategies (CG, DEF-MILP, DEF-WMILP, and the
corresponding pruned algorithms) against three attacks (k-MaxVD, IM, WIM). We
also compare our defense strategies with several defense baselines. These attack
and defense strategies are detailed as follows.

Attacks. We consider three types of attacks: k-MaxVD, IM, and WIM. In the
k-MaxVD attack, the attacker solves BR-MILP (5) to find the seeds. In the IM
attack, the attacker employs an efficient variation, termed CELF-greedy [21], of
the classical greedy algorithm [10] to solve the influence maximization problem.
Specifically, CELF-greedy utilizes the submodularity of the spread function and
conduct an early termination heuristic, which achieves up to 700 times efficiency
improvement while still providing a (1−1/e) approximation guarantee. The WIM
attack is a variation of the IM attack adapted to the weighted setting.
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(a) ER (k-MaxVD) (b) ER (IC) (c) ER (LT) (d) ER (WIM)

(e) WS (k-MaxVD) (f) WS (IC) (g) WS (LT) (h) WS (WIM)

(i) BA (k-MaxVD) (j) BA (IC) (k) BA (LT) (l) BA (WIM)

Fig. 2. The performance of DEF-MILP on synthetic networks against several attacks.

Defenses. Our optimal defense strategy is constraint generation(CG), and the
primary defense strategy is DEF-MILP, where the defender solves the MILP
(18) to find the set of nodes to block. We also consider DEF-WMILP, which is
a variation of DEF-MILP in the weighted setting, as well as the corresponding
pruning algorithms.

We compare our defense strategies with the following baselines. First, we
consider a class of heuristic defense approaches where the defender blocks nodes
in descending order of a specific node centrality measurement. The intuition is
that node centrality measures the importance of a node in the network and
blocking nodes with high centrality is more likely to limit the influence. In
the experiment, we use node degree (out-degree in case of directed graphs),
betweenness, PageRank, and influence as the centrality measurements and term
the corresponding defenses as Degree, Betweenness, PageRank, and Influence,
respectively. Specifically, the influence of a node is measured by the number of
influenced nodes in the network when it is treated as the sole seed. We also
consider four other baselines: Influence Maximization (IM), Greedy, WDom,
and Random. In IM, the defender acts as an influence maximizer and blocks kD

nodes that would cause the maximum influence. Greedy is a heuristic approach
proposed in [30]. They assume that an attacker chooses some influential nodes
at the beginning, and a protector blocks the nodes according to the maximum
marginal gain rule. In our experiment, we set the influential nodes as the seeds
selected by influence maximization in the original network. In WDom, we define
a quantity WDomj =

∑
vi∈NI(vj)

μi for a node j, where μi is the non-negative
weight of the node i, as the sum of weights of node j’s dominating nodes. This
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(a) Hamsterster(kA = 30) (b) Email-Eu-core(kA = 20)

Fig. 3. The performance of PRUNED-MILP on Hamsterster and Email-Eu-core networks
against k-MaxVD.

(a) Email-Eu-core (b) Hamsterster,0.03 (c) Hamsterster,0.4 (d) FB606(IC)

(e) Enron3600,0.03 (f) Enron3600,0.4 (g) Enron4300,0.03 (h) Enron4300,0.4

(i) FB2000,0.01 (j) FB3000,0.01 (k) FB2000,0.1 (l) FB3000,0.1

Fig. 4. The performance of PRUNED-MILP on real-world networks against IM attackers.

Fig. 5. The performance of PRUNED-MILP on real-world networks against WIM attack-
ers. Left: Email-Eu-core, kA = 20. Middle: Hamsterster, kA = 30, p = 0.03. Right:
Hamsterster, kA = 30, p = 0.4.

heuristic is used to defend WIM attackers by blocking kD nodes with highest
WDom. Finally, Random selects a random set of nodes to block.

Comparison with Constraint Generation. First, we compare DEF-MILP with
the constraint generation (CG) algorithm. We consider several variations of CG
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using a gap parameter, which defines the gap between solution quality of newly
generated constraint (i.e., attack) and the best previously generated constraint; a
gap of 0 implies that CG computes an optimal solution, whereas other gaps trade
off optimality and efficiency. We evaluate the algorithms on ER networks whose
sizes increase from N = 15 to N = 65. For each network’s size, we generate 50
instances to test the runtime and 25 instances to test the attacker’s utility with
various random seeds and take the average. The experiments are conducted
under DEF-MILP defense and CG defenses with budget kD = 5,against the
K-MaxVD attack with kA = 5.

We can see that the results of DEF-MILP are quite close to that of optimal
CG solutions, and are in some cases better than CG that uses a small gap.
Though the DEF-MILP is not far from the optimal solution, the runtime is
significantly reduced. Figure 1 shows that even if we loosen the gap of CG
algorithms to 1, 2, and 3, the runtime of DEF-MILP is still considerably lower.

Results on Synthetic Graphs. In our experiments, we generate 64-node graphs
for k-MaxVD and IM (including IC and LT) attackers with budgets kA = 5. We
generate 80-node networks for WIM attackers with kA = 6. Each node is associated
with a value μi ∼ U [0, 1].

As shown in Fig. 2, our defense strategy DEF-MILP and DEF-WMILP out-
perform all other baselines under all three attacks. We note that on BA graphs,
heuristics based on node importance is comparable to the MILPs, while all these
approaches perform significantly better than Random. One possible reason is that
in BA graphs, there are a few high-degree nodes that can be effectively identified
by centrality based algorithms.

For the defense algorithms, we can see that several heuristics can work effec-
tively. RageRank is a good heuristic under k-MaxVD attack. IM works better than
other heuristics under the LT model in our experiments. For the WIM attacker,
WDom heuristic can be slightly better than other heuristics.

Results on Real-World Networks. As the size of real-world networks is signifi-
cantly larger, we only test Pruned-MILP and prune the nodes in descending
order of the degrees. We compare Pruned-MILP with Degree that uses the
same node property to select nodes.

Figure 3 shows the utility of the k-MaxVD attacker on Hamsterster friend-
ships network, with kA = 30, and Email-Eu-core network, with kA = 20. The
results show that our proposed approach outperforms the Degree algorithm, even
though aggressive pruning is used.

Figure 4 shows the defense of the IM attackers with different diffusion models
in three networks. Linear Threshold (LT) model is used in the Email-Eu-core
network. Uniform Independent Cascade (UIC) with different propagation prob-
abilities are used in Hamsterster friendship network and the Weighted Indepen-
dent Cascade (IC), in which each edge from node u to v has the propagation
probability 1/deg(v) to activate v, is used in a 606-node sampled Facebook net-
work. The budgets of the attacker are set as kA = 20, kA = 30 and kA = 10,
respectively.
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Table 1. The effect of integrality relaxation of BR-MILP (5) in Hamsterster and
Email-Eu-core networks.

kA Hamsterster Email-Eu-core

MLP MMILP Gap (‰) MLP MMILP Gap (‰)

10 320.500 320.000 1.563 690.380 689.000 2.002

20 443.000 443.000 0.000 784.000 782.000 2.558

30 531.875 531.000 1.648 836.500 836.000 0.598

40 603.750 603.000 1.244 872.090 872.000 0.103

50 660.500 660.000 0.758 895.830 895.000 0.927

60 707.375 707.000 0.530 915.839 915.000 0.917

For the larger two network datasets, we evaluate the performance of
PRUNED-MILP in their sub-networks. Enron email network is sampled to
Enron3600 containing 3,600 nodes and 11,412 edges and Enron4300 contain-
ing 4,300 nodes and 11,968 edges (kA = 70). Facebook network is sampled to
sub-networks with 2000 (kA = 40) and 3000 (kA = 60) nodes. The two sets of
networks are applying different UIC model in view of small (p = 0.01, p = 0.03)
and large (p = 0.1, p = 0.4) diffusion probabilities. Figure 4 shows that our
algorithm is generally better than the Degree algorithm.

Next, we evaluate our PRUNED-MILP defense of WIM attack. Figure 5
shows the utility of the attacker on the Email-Eu-core network and the Ham-
sterster friendship network. Each node vi ∈ V in the networks is assigned a value
μi uniformed distributed in [0, 1].

We compare the two pairs of experiments with two kinds of pruning orders,
Degree and WDom. Intuitively, WDom considers the value of nodes so that it might
be more adaptable to this problem. Figure 5 shows that applying the proposed
PRUNED-MILP outperforms the original defense strategies.

The Effect of LP Relaxation. In our approach, we relaxed the integral con-
straints on the variables y of the BR-MILP, through which we are essentially
optimizing over an upper bound of the attacker’s utility. We demonstrate the
quality of this approximation through experiments. Let the relaxed problem
be BR-LP. We compare the optimal objective values of BR-MILP and BR-LP,
denoted as MLP and MMILP , respectively. We are interested in the integrality
gap defined as IG = MLP /MMILP . Table 1 shows the gap in percentage, defined
as Gap = (MLP − MMILP )/MMILP , for the Hamsterster network and Email-
Eu-core network with the attackers’ budget from 10 to 60. The results show that
the gaps in various cases are almost negligible, demonstrating a good approx-
imation quality at least from an experimental perspective. The experiments in
synthetic networks achieves similar results.

Trade-Off in Heuristic Pruning Algorithm. The parameter ld in our pruning
algorithm trades off the run-time and quality of the algorithm. In Table 2, we
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Table 2. The run-time and solution quality in Hamsterster network with kD = 400
and kA = 30

ld 400.0 500 550.0 600.0 639.0

Run-time (sec) 7.4 12.8 17.4 131.0 589.0

UIM 188.7 153.7 146.8 138.4 133.1

Uk−MaxVD 210.0 194 175.0 164.0 155.0

show the run-time and the attacker’s utilities with different configurations of ld
in Hamsterster network when kD = 400 and kA = 30. Uk−MaxVD denotes the
utility of the k-MaxVD attacker, and UIM denotes the utility of the IM attacker
with propagation probability p = 0.4. We can observe that when ld increases,
runtime quickly increases, but the solution quality also improves. However, when
ld is larger than one threshold, CPLEX cannot return the solution in reasonable
time.

6 Conclusion

In this paper, we investigate the problem of blocking adversarial information in
social networks, where a network defender aims to limit the spread of misinfor-
mation by blocking nodes in the network. We model the problem as a Stackelberg
game and seek the optimal strategy for the defender. The main challenge is to
find the best response for the attacker, which involves solving the influence maxi-
mization problem. Our approach is to approximate the attacker’s influence max-
imization as the maximum node domination problem, which can be expressed
as an integer program. This enables us to develop a constraint generation app-
roach for the defender’s problem. Further, by utilizing linear program relaxation
and its duality, we reformulate the defender’s problem as a mixed-integer linear
program, which can be solved efficiently. We further develop a heuristic pruning
algorithm to deal with large networks efficiently, as well as a constraint genera-
tion algorithm to compute the exact solution iteratively.

We test our defense approaches against several attacks on synthetic graphs
and real-world networks and compare them with various state-of-the-art defense
baselines. The experiment results show that our proposed defense approaches
can effectively limit the spread of misinformation in an adversarial environment,
outperforming all other baselines.
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