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Abstract

Spatio-temporal incident prediction is a cen-
tral issue in law enforcement, with applications
in fighting crimes like poaching, human traf-
ficking, illegal fishing, burglaries and smug-
gling. However, state of the art approaches fail
to account for evasion in response to predic-
tive models, a common form of which is spa-
tial shift in incident occurrence. We present a
general approach for incident forecasting that
is robust to spatial shifts. We propose two
techniques for solving the resulting robust op-
timization problem: first, a constraint genera-
tion method guaranteed to yield an optimal so-
lution, and second, a more scalable gradient-
based approach. We then apply these tech-
niques to both discrete-time and continuous-
time robust incident forecasting. We evalu-
ate our algorithms on two different real-world
datasets, demonstrating that our approach is
significantly more robust than conventional
methods.

1 Introduction

The increase in availability of data and algorithmic
progress has created new ways of fighting illegal ac-
tivities like poaching, illegal logging, illegal fishing,
terrorist acts and smuggling. Predictive analytics and
data-driven methods have been developed to understand
where such incidents could potentially happen, with
spatial-temporal incident prediction a major part of this
literature [1, 2, 3, 4, 5, 6]. Mukhopadhyay et al. [7] pro-
vide a comprehensive review of prior work in this do-
main. However, a significant limitation of existing inci-
dent prediction methods is that they do not account for
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changes in the behavior of the perpetrator in response
to the predictive models. Indeed, people with the ma-
licious intent of committing crimes can potentially alter
their behavior in response to patrols based on static pre-
dictive models, effectively resulting in spatial shifts in
the resulting incidents [8, 9, 10].

Our goal is to create an algorithmic framework for fore-
casting spatial-temporal incidents that is robust to spa-
tial manipulations by agents trying to commit unlawful
acts. We seek to identify the vulnerabilities in existing
prediction models, create an approach for capturing ad-
versarial actions and finally develop a robust prediction
model against such actions. Instead of focusing on a spe-
cific model of incident arrival, we create a general ap-
proach that is flexible to accommodate both continuous-
time and discrete-time prediction models. We only as-
sume a convex likelihood function over incident arrival,
and model the interaction between the learner and the at-
tacker as a Stackelberg game. In our model, the learner
chooses a patrol strategy and the attacker chooses to ma-
nipulate its behavior in response to the chosen strategy.
Such a problem falls under the paradigm of adversarial
learning, which studies the effect of adversarial influ-
ence on machine learning models [11, 12, 13]. Adver-
sarial learning has been successfully used in many do-
mains, and it has been used recently to combat implicit
biases and imperfections in crime prediction methodolo-
gies [14]. However, to the best our knowledge, models
specifically aimed to tackle manipulation in agent behav-
ior to respond to forecasting models have not been ex-
plored, and we aim to bridge this gap.

The proposed game-theoretic model involving a learner
and an attacker poses two major challenges: a) the re-
sulting optimization problem is intrinsically difficult to
solve due to the nested hierarchy of the attacker’s and
defender’s optimization problems, and b) the set of ad-
versarial strategies is combinatorial. We explain how
these specific challenges manifest themselves, and de-
velop techniques for addressing them.



Contributions: 1) A general Stackelberg game model
for robust incident prediction accounting for adversarial
spatial crime shifts; 2) an approach based on dynamic
constraint generation that computes an optimal leader
strategy in the Stackelberg game; 3) a gradient-based al-
gorithm that trades-off optimality and scalability; 4) ap-
plication of the proposed approach to both discrete-time
(Poisson regression and logistic regression) as well as
continuous-time (survival analysis) incident prediction
models; and finally, 5) evaluation of the proposed ap-
proach, demonstrating that it is significantly more robust
to adversarial manipulation than conventional methods.

2 Model

We consider a set of spatial cells G, that spans the en-
tire spatial area under consideration. Let gi ∈ G denote
the ith cell. Suppose that a sequence of incidents occurs
over this area, generated according to some unknown
distribution, resulting in a dataset of incidents, Dseq =
{(t1, `1, w1), (t2, `2, w2), . . . , (tn, `n, wn)}, where each
incident di is identified by its time ti, location li (map-
ping to a cell in G), and a vector of spatio-temporal fea-
tures wi ∈ Rm, capturing, for example, weather, prox-
imity to liquor stores, and any other potential determi-
nants of crime. This dataset serves as a proxy for a fu-
ture baseline distribution of incidents (i.e., distribution if
we follow the specific policy that was implemented at the
time the data was collected).

We assume that crime incidents are stochastic, and there-
fore associate incidence of these with a random vari-
able X , the nature of which depends on the particular
model of crime prediction. For example, in discrete-time
models, X will capture the number of incidents over
a fixed time interval, whereas in continuous-time mod-
els X will be the inter-arrival time between incidents.
We use X to transform our dataset into an input dataset
D = {(wi, xi)i} of incident features wi and associated
observation xi (e.g., crime count).

Suppose that a crime prediction model entails a likeli-
hood function F (x; θ, w) representing the likelihood of
observation x given features w, with θ being the model
parameters. We assume that F is convex in θ. A conven-
tional approach to crime prediction is to learn parameters
θ that maximize the likelihood of observed data D:

θ∗ ∈ argmax
θ

∏
i

F (xi; θ, w).

Typically, for computational convenience this is trans-
formed into maximizing log-likelihood:

max
θ

∑
i

logF (xi; θ, w) ≡
∑
i

f(xi; θ, w), (1)

where f(xi; θ, w) = logF (xi; θ, w). Subsequently, we
refer to f as both the (log)-likelihood function and the in-
cident prediction model to streamline exposition. Later,
as we tackle the specific applications, these will be dis-
tinct.

Attacker Model: Spatial-temporal incident prediction is
commonly a part of a broader strategy of response or pre-
vention by law enforcement, with the typical net result
that spatio-temporal patrols are more concentrated in the
areas of higher criminal activity. This, in turn, incen-
tivizes potential perpetrators of crimes, such as poachers,
to move to other, less actively patrolled areas, to reduce
the likelihood of being caught. Our specific model of
spatial crime shift is based on two fundamental theories
that govern crime occurrence. The first is the opportu-
nity theory of crime [15, 16], which posits that crime
locations are deliberate choices by criminals driven by
their attractiveness based on a specific utility function.
This motivates our consideration of spatial crime shift.
The second is the crime clustering theory [17, 18], which
posits that opportunities for similar crimes are often clus-
tered and occur close to each other. This motivates an-
other feature of our model: even if there is an incentive
for attackers to deviate from their ideal locations, they
are also averse to moving too far away, and may indeed
be deterred in committing a crime if nearby opportunities
do not present themselves. The net result of such evasion
behavior, that is effectively in response to the incident
prediction model f , is a spatial shift in crime incidents.

d1 d2
d3

g1 g2 g3

g9

g4 g5 g6

g7 g8

Figure 1: An illustration of spatial shifts by attackers to
evade a learned model.

We capture the attacker’s behavior by simulating how the
attacker would transform the input dataset D in response
to a learned function f . To capture the idea that spatial
shifts remain in close proximity to the baseline crime lo-
cation, consider a particular incident di such that li = gk
(say). Let Nk be the set of neighboring cells of gk. This
neighborhood structure can be exogenously specified for
the spatial area of interest G; we consider some exam-
ples of this in our experiments later. Our model of the
attacker is that they are able to shift the incident in space
from gk to any of its neighboring locations Nk. Thus,
supposing that Nk includes gk (since the attacker could
potentially choose to not shift the incident), the attacker
can choose a new location of crime incident di to be any-



where in Nk, as illustrated in Figure 1. We capture this
shift by the variable sji ∈ {0, 1}, which denotes the at-
tacker’s decision to shift incident di to cell gj . Let s be
the collection of spatial shifts chosen by the attacker for
all the incidents in our dataset. The attacker’s objective
is to minimize the predicted likelihood, i.e., likelihood of
incidents in the chosen location s given a fixed model f .
Formally, the attacker aims to solve the following opti-
mization problem:

min
s∈S

∑
i

f(xi(s); θ, w), (2)

where we make explicit that the attacker’s spatial shifts
alter the predicted likelihood f by modifying the ob-
served incident characteristics xi(s), and where S is the
set of all possible spatial shifts over all incidents. Note
the combinatorial structure of the attacker’s optimization
problem in having to consider all possible joint incident
shifts S. This complexity arises because the impacts of
shifts on the likelihood are not necessarily independent
(e.g., features w may depend on prior incidents; inter-
arrival times between incidents in a given location are
changed when a single incident is moved to a different
location). We will address it below.

Defender Model: The learner’s (defender’s) goal is to
learn a model f that is robust to adversarial shifts in in-
cidents according to the model above. We formalize it as
a robust likelihood maximization problem:

max
θ

min
s∈S

∑
i

f(xi(s), θ;w). (3)

We can equivalently view the model in Equation 3 as a
Stackelberg game in which the leader is the learner who
commits to a model θ, and the follower is the adversary
who first observes the model θ and then shifts incident
locations in response.

3 Approach

The optimization problem (3) is difficult to solve for a
few reasons. First, the attacker optimization problem in-
volves discrete decisions, making it difficult to deal with
the bi-level nature of the problem. Second, the attacker
problem is combinatorial. We propose two general ap-
proaches to solve the proposed problem.

3.1 RSALA : Robust Spatial-Temporal Predictions
with Linear Attacks

In the first approach, we frame the attacker’s problem as
a linear optimization problem with an exponential num-
ber of variables. Note that each attacker action (a specific

choice of s) results in a different modification to the set
of incidents, resulting in a new collection of incidents
with altered spatial locations. We refer to each such re-
sulting unique set of incidents as a chain. In essence, a
specific collection of shifts s ∈ S results in a particular
chain. We can then think of the attacker’s full (combina-
torial) action space as the set of all such chains — that
is, the set of all possible manipulations to the original
dataset. Let there be a total of c such chains. The at-
tacker’s objective thus reduces to choosing the chain that
results in the lowest likelihood given the model f , which
can be represented as

min
λ

c∑
i=1

λifi(x; θ, w) (4a)

s.t.
c∑
i=1

λi = 1 (4b)

λi ∈ {0, 1} ∀i ∈ {1, .., c} (4c)

where fi(x; θ, w) denotes the likelihood of incidents in
the ith chain, and λ is a binary variable which is set to 1
only for the chain that the attacker chooses. The obvious
issue with this formulation is that c could be extremely
large, making the problem intractable. We can address
this issue by looking at the dual of problem 4. First,
we point out that the attacker can only choose multiple
chains as part of an optimal solution if they contribute
the same utility to the attacker’s objective. This crucial
insight lets us relax the integrality constraint over λwith-
out sacrificing the utility of the attacker, converting prob-
lem (4) into a linear program. Then, due to strong duality,
we can directly replace the attacker’s objective function
in problem (3) with its dual, and represent the overall ro-
bust likelihood maximization problem as

max
θ,δ

δ (5a)

s.t. δ − fi(x, θ;w) ≤ 0 ∀i ∈ {1, . . . , c} (5b)
δ ∈ R, θ ∈ Rm (5c)

where δ ∈ R represents the dual variable.

This formulation has two important advantages: first, it
converts the max-min hierarchy of problem (3) into a sin-
gle convex maximization problem, and secondly, it puts
the potentially large number of possible attacker actions
into a collection of constraints. This, in turn, allows us to
solve the problem using constraint generation. A con-
straint generation approach starts with a subset of the
attacker actions, and iteratively updates the model by
dynamically generating constraints according to actions
taken by the attacker in response to the defender’s strat-
egy.

While such an approach makes our algorithm compara-
tively tractable, the attacker problem is still combinato-



rial. We use a crucial insight to tackle this. Consider the
primary consequence of the attacker’s actions: choosing
a location of crime effectively changes the overall like-
lihood of the learned model. However, making such a
decision optimally is unrealistic from an attacker’s per-
spective, since it would require the attacker to be effec-
tively clairvoyant (they have to account for time of inci-
dents that have not occurred). Consider for example, the
attacker choosing to evade detection by minimizing the
likelihood of a discrete-time regression model f based on
Poisson regression. While it tries to shift incident di from
cell gk to gj (say), it must account for other incidents that
could potentially happen in both the cells in the same
time-step. This is clearly unreasonable, since in practice
attackers cannot account for incidents that have not yet
happened. We therefore simplify the attack model: at
any point in time t, we restrict the attacker to minimize
the likelihood of the model for all incidents dk ∈ D such
that tk ≤ t, since at this time, the attacker can only have
information about incidents that have happened before
t. This assumption dramatically reduces the complexity
of the inner problem, since now the attacker’s objective
is reduced to an optimization problem over a finite set
of cells. The attacker can shift each incident to the cell
that results in lowest likelihood, without considering how
such a decision can potentially affect future incidents.
We use these insights, and present our approach based
on constraint generation in Algorithm 1.

Algorithm 1 RSALA
1: INPUT: Dataset D, Likelihood Model f , Adversar-

ial Utility function A
2: OUTPUT: Robust model parameters θ∗

3: Set θ0 ← argmaxθ f(x; θ, w); k ← 0; Constraint set
φ0 ← Attack(θ0); gap←∞

4: while gap > ε do
5: θk+1 ← Solve (φk)
6: φk+1 ← φk ∪ Attack(θk+1)
7: Dk+1 ← Update(Dk,Attack(θk+1))

8: gap← fD
k+1

(θk+1)− fDk+1

(θk)
9: k ← k + 1

10: return θk+1

We explain some notation before explaining the algo-
rithm. We use A to denote the attacker’s objective func-
tion from formulation 2. At any iteration k of the algo-
rithm, we refer to the current set of constraints by φk,
the defender’s parameters by θk, and the dataset used in
iteration k by Dk (which gets updated according to the
actions taken by the attacker). Further, we use Solve(φk)
to denote solving problem 5 under constraints φk, and
use Attack(θi) to denote the generation of the attacker’s
best response against θi. Also, we use Update(Dk, y)

to denote a function that updates the existing dataset
with manipulations generated as a response to a specific
choice of θ made by the defender (thereby arriving at a
new dataset Dk+1), and use fD

k

(θ) as a shorthand for∑
di∈Dk f(xi; θ, w).

Now, at iteration k in the algorithm, we first compute
the defender’s optimal parameters θk+1 by solving prob-
lem 5 under constraints φk (step 5). We then update the
constraint set by computing the attacker’s best response
to θk+1 (step 6). Such a response is straight-forward
to compute, due to the relaxed version of the attacker’s
problem mentioned above. The attacker’s response is
then used to update the dataset (step 7), which is then
used in the subsequent iteration. This process is con-
tinued until the attacker’s gain between successive itera-
tions is within an exogenously specified parameter ε.

While RSALA is guaranteed to converge in finite time to
the optimal solution, the strategy-space of the attacker
could be extremely large, and solving the optimization
problem 5 at every iteration of RSALA is computationally
slow. This motivates us to create a heuristic approach,
that balances between the quality of solutions and com-
putation time of the algorithm. We call this approach
Adversary based Gradient Descent (AdGrad).

3.2 AdGrad : Adversary Based Gradient Descent

Convex likelihood functions that do not have closed-
form solutions can be maximized using gradient-based
approaches. Our problem is not as straightforward: at-
tacker actions s affect the model parameters θ, but these
actions are a function of the model parameters as well.
We modify the standard gradient-based approach to en-
able the defender to take gradient steps that are based
on the attacker’s adversarial actions. We present this ap-
proach in Algorithm 2. We use the same notation as in
Algorithm 1, and denote the attacker’s decisions at iter-
ation k by s(k). At each iteration of gradient descent,
we first calculate the best response of the attacker using
the current parameters θ chosen by the defender (step 5).
This provides us with an updated set of data with adver-
sarial manipulations, which is then used by the defender
to update its parameters using a standard gradient step
(step 7). This process is repeated until convergence, us-
ing the same notion of convergence as in RSALA.

So far, we have described the overall idea behind robust-
ness against spatial shifts in the context of incident pre-
diction. Now, we dive into specific models, and apply
this idea of robustness. We first show how robust inci-
dent prediction optimization problems can be framed for
both continuous-time and discrete-time predictive mod-
els. Specifically, we present robustness in the context



of a Poisson regression model (count-based and discrete-
time), logistic regression (binary response-based model
and discrete-time) and spatial-temporal survival analysis
(continuous-time).

Algorithm 2 AdGrad
1: INPUT DatasetD, Likelihood Model f , Adversarial

Utility function A
2: OUTPUT Robust model parameters θ∗

3: Set θ0 ← argmaxθ f(x; θ, w); k ← 0; gap←∞
4: while gap > ε do
5: s(k + 1)← Attack(θk)
6: Dk+1 ← Update(Dk, s(k + 1))

7: θk+1 ← θk + α∇fDk+1

(θk;x,w)

8: gap← fD
k+1

(θk+1)− fDk+1

(θk)
9: k ← k + 1

10: return θk+1

4 Robustness in Discrete-Time Incident
Prediction

4.1 Count-based Model (Poisson Regression)

Consider that the total time in consideration in dataset D
is divided into T time-steps. Let xti be a random variable
that denotes the number of incidents occurring at any
time-step t in cell gi. The likelihood model f(x; θ, w)
therefore denotes the likelihood of x incidents occurring
in a cell at a given time-step, where θ denotes the re-
gression coefficients. In Poisson regression, the random
variable of interest follows a Poisson distribution with
mean µ, and µ = eθ

>w. Thus, the likelihood func-
tion for all incidents in dataset D can be represented as
F (x; θ, w) =

∏T
t=1

∏
gi∈G{µ

xti
it (e

−µit)/(xti!)}, where
wit denotes the features associated with cell gi at time-
step t, and µit = θ>wit.

Attacker Model: Recall that incident di ∈ D and `i
represent the ith incident in our dataset and its location
respectively. Further, Ni denotes the neighbors of cell
gi. We assume that the attacker could move to any of the
neighboring cells to commit the crime, in order to evade
detection. The spatial parameter sij is a binary variable
that denotes the attacker’s choice to shift incident dj to
cell gi. In our problem, the attacker’s objective is to mini-
mize the likelihood of the forecasting model by optimiz-
ing over the spatial decisions s. The attacker problem,
using the likelihood for Poisson regression, can be repre-
sented as

min
s
A(s; θ) ≡

T∑
t=1

∑
gi∈G

{
(

n∑
j=1

1(dj , t)s
i
j)θ
>wit − eθ

>wit

− log(

n∑
j=1

1(dj , t)s
i
j)!
}

(6a)

s.t.
∑

gi∈N`j

sij = 1 ∀j ∈ {1, . . . , n} (6b)

sij ∈ {0, 1} ∀gi ∈ G ∀dj ∈ D (6c)

where 1(dj , t) is an indicator function set to 1 if incident
dj occurred in time-step t, and is 0 otherwise. Constraint
6b enforces the natural bound that the attacker can shift
one incident to only location.

Robust Poisson Regression Given the adversarial ma-
nipulations, the defender tries to maximize the likelihood
of the learned model. Thus, the overall problem of robust
incident prediction can be defined as

max
θ

min
s
A(s, θ) (7a)

s.t.
∑

gi∈N`j

sij = 1 ∀j ∈ {1, . . . , n} (7b)

sij ∈ {0, 1} ∀gi ∈ G ∀dj ∈ D θ ∈ Rm (7c)

We can directly use our algorithmic approaches to solve
problem (7).

4.2 Binary Prediction Model (Logistic Regression)

Having looked at a count-based regression model, we
now explain how our idea of robustness can be applied
to binary models of spatial-temporal incident prediction.
We choose logistic regression as our approach of interest,
that models a binary output variable x through a logit
transformation, such that P (x = 1; θ, w) = 1

1+e−θTw ,
where θ is the set of regression coefficients, and w repre-
sents an associated set of features.

We make some assumptions to use logistic regression in
the context of incident prediction, as it models a binary
response. As in Poisson regression, we assume that the
total time under consideration is divided into T discrete
time-steps. We further assume a granularity of temporal
discretization that ensures that in each time step, only one
incident occurs in a cell (essentially, we assume the re-
sponse variable that measures the presence of crimes in a
cell at a specific time step is binary). Such an assumption
is actually reasonable for certain kinds of crime incidents
(poaching in forests, for example), which are sufficiently
displaced temporally. In the absence of adversarial ma-
nipulations, the likelihood of incident occurrence across



all cells over the entire temporal horizon can be repre-
sented as f(θ;x,w) =

∑
gi∈G

∑T
t=1 log( 1

1+e−θ>w
)xti+

log(1 − ( 1

1+e−θ>w
))(1 − xti) The defender’s objective

without adversarial manipulations is simply finding θ∗ =
argmaxθf(x; θ, w)

Attacker Model: As before, we denote the attacker’s
action space by the binary spatial parameter sij ∈ {0, 1},
which is 1 if the attacker chooses to shift incident dj to
cell gi, and 0 otherwise. The attacker’s objective can be
represented as

min
s
A(s; θ) ≡

∑
gi∈G

T∑
t=1

1(dj , t)

{
log(

1

1 + e−θ>w
)(sij) +

log(1− (
1

1 + e−θ>w
))(1− sti)

}
(8a)

s.t.
∑

gi∈N`j

sij = 1 ∀j ∈ {1, . . . , n} (8b)

sij ∈ {0, 1} ∀gi ∈ G ∀dj ∈ D θ ∈ Rm (8c)

where constraint 8b ensures that the attacker’s shifts each
incident only once.

Robust Logistic Regression Given adversarial interven-
tion, the defender tries to maximize the likelihood of
model after taking into account the potential spatial shifts
by the attacker. The robust optimization problem can be
represented as

max
θ

min
s
A(s, θ) (9a)

s.t.
∑

gi∈N`j

sij = 1 ∀j ∈ {1, . . . , n} ∀gk ∈ G (9b)

sij ∈ {0, 1} ∀gi ∈ G ∀dj ∈ D θ ∈ Rm (9c)

5 Robustness in Continuous-Time
Incident Prediction

Now, we shift our attention to models of incident pre-
diction that operate in a continuous-time domain. In this
case, for each cell gi ∈ G, we use the random variable
X to denote the time between successive incidents, such
that xi = ti − ti−1 represents the time to arrival of the
ith incident in the dataset. The goal of a continuous-time
predictive model is to learn a distribution f(x; θ, w) over
inter-arrival time between incidents, where θ represents
the regression coefficients. Recently, survival analysis
has been shown to have state-of-the-art performance for
such problems, for example, in crime and traffic acci-
dent prediction settings [6, 19, 20]. A parametric survival
model for a specific data point {xi, wi} can be defined as

log(xi) =
∑m
i=1 θjwij + z, where wij denotes the real-

ization of feature j associated with data point i, and z
is the error term, distributed according to distribution h.
The particular choice of the distribution f depends on
how we model the error term z. We adopt a common
exponential distribution model for X , used previously
in the context of incident prediction [6, 19, 20]. The
log-likelihood of the observed data can be represented as
f(x; θ, w) =

∑n
i=1 log h(log(xi) − w>i θ). Given such

a model for likelihood, the defender tries to find the pa-
rameters θ∗, such that θ∗ = argmaxθ f(x; θ, w).

Attacker Model: We assume that the attacker first ob-
serves the survival model f , and may shift to a different
cell so as to commit a crime in an area with a smaller
predicted crime frequency according to f .

To formalize the model, we introduce some notation. For
each cell gi ∈ G, let Pi to define possible successive
(in time) pairs of data-points {dk, dl} that could occur
in gi due to adversarial manipulation. We are specifi-
cally interested in successive incidents since the random
variable we want to model is the incident inter-arrival
time. We illustrate the idea behind such pairs in Figure
1. Consider the set of cells {g1, . . . , g9} and incidents
{d1, d2, d3}, which we assume are ordered by their times
of occurrences. Now, to look at adversarial perturbations
in the dataset, we look at cell g5 as an example. Incidents
in its neighborhood that could move to it form the set
{d1, d2, d3} (note that this includes d2 since the attacker
could chose to not deviate from the original location of
the incident). This gives us three pairs of successive inci-
dents, namely the set {(d1, d2), (d2, d3), (d1, d3)}. Ob-
serve that (d1, d3) is also a potential pair of successive
incidents in g5 since the attacker could chose to move d2
to a different cell, which would result in d1 and d3 occur-
ring successively in g5. Moreover, the pair (d1, d3) could
exist as a pair of (possible) successive incidents if and
only if d2 moves to a different cell. In order to capture
this, for any cell gm and pair of incidents (di, dj) ∈ Pm,
we use Bmij to denote the set of all incidents dk ∈ D
that could potentially move to gm such that ti < tk < tj .
This lets us take into account the fact that di and dj could
occur consecutively in gm if and only if they both move
to gm and none of the incidents from the set Bmij move
to gm. Finally, we capture the decision of the attacker
to move an incident to a cell by the variable sij , which is
a binary variable that captures the attacker’s decision of
shifting dj shifting to cell gi.

We are now ready to present the attacker’s problem. Let
xij denotes the time between potential pair of successive
incidents indexed with i and j. The attacker’s objective is
to minimize the log-likelihood of incident arrivals by in-
troducing spatial shifts. This can be represented formally



as the following optimization problem:

min
s
A(s; θ) ≡

∑
g∈G

∑
i,j∈Pg

sgi s
g
j

{ ∏
dk∈B

g
ij

(1− sgk)
}
f(xij ;wi, θ)

(10a)

s.t.
∑

gi∈N`j

sij = 1 ∀j ∈ {1, .., n} (10b)

sij ∈ {0, 1} ∀gi ∈ G,∀dj ∈ D (10c)

A detailed explanation about the formulation can be
found in the supplementary material.

Robust Survival Analysis The defender’s goal is to
maximize the likelihood objective A over parameters θ.
The resulting formulation is identical to that in Equa-
tion (7) for robust Poisson regression, with the likelihood
objective A(s, θ) for the survival model the sole differ-
ence.

6 Experimental Evaluation

6.1 Data

We used the following real-world crime data from two
sources -

• Poaching data from Uganda: We used data from the
Murchison Falls National Park in Uganda, that cov-
ers 3893 sq. km. As the park covers an extremely
large area, each cell is patrolled only a few times
a year. As a result, we did not split the data tem-
porally. We used 3 years of data for training, and
1 year of data for testing. For spatial discretiza-
tion, we used a similar grid structure as with urban
crimes, with square cells having sides measuring 1
km. We used geographic and terrain data, as well
as past animal sightings as features. Patrol report-
ing in the park is done as a binary response, and
we considered a total of 18255 reports, with 2602
of the reports being positive (evidence of poaching)
and the rest being negative.

• Burglary data from a metropolitan area in Ten-
nessee, USA: we considered 2184 burglaries from
7 months in 2014. Burglaries, to the best of our
knowledge, are not detected by patrols, but rather
reported. As a result, there is lesser chance of the
data being contaminated by existing biases in pa-
trol strategies. To further verify our approach, we
created two overlapping datasets from 7 months of
data, each with 3 months of data for training and 1
month’s data for testing. For spatial discretization,
we used a grid consisting of equally sized square

cells with sides measuring 1 mile. We used risk-
terrain data, past incidents, and weather data as fea-
tures.

6.2 Setup

We use poaching data (marked only as binary response)
to evaluate logistic regression and burglary data (marked
with counts and exact time of events) to evaluate Poisson
regression and survival analysis. We define neighbors for
a cell based on its adjacent cells. A detailed description
of our data and features is provided in the supplementary
material. Our implementation can be found at https:
//tinyurl.com/yc2uz7sv.

We use models without accounting for adversarial inter-
ventions as our primary baseline. This has two advan-
tages. First, it allows us to evaluate the efficacy of our
algorithms on models that are not explicitly trained to
be robust, and secondly, it lets us compare our approach
with a baseline that has shown better performance than
other state-of-the-art alternatives [6, 21]. We refer to
the baseline models as standard survival analysis (SSA),
standard Poisson regression (SPR), and standard logistic
regression (SLR).

6.3 Results

Robustness — To compare the efficacies of the two al-
gorithmic approaches, we begin by looking at how the
algorithms AdGrad and RSALA perform on unseen data,
and directly compare their performance to models that
do not account for adversarial intervention. To do this,
we introduce adversarial manipulations on our test data
based on the attacker model described in section 2. We
show the results on robustness for all the approaches us-
ing poaching and burglary data in Figure 2. In all the
cases, we observe that both RSALA and AdGrad ensure
higher robustness against adversarial manipulations than
SPR and SSA. Also, as expected, RSALA outperforms Ad-
Grad, since it is guaranteed to converge to the optimal
solution.

Computational Time — Next, we present training times
for robust predictive models. Training times for crime
prediction algorithms can be a crucial factor in their de-
ployment, as intervention strategies are often calculated
periodically after each shift undertaken by patrols. We
show our cumulative training times in Figure 3. As ex-
pected, we see that AdGrad takes considerably less time
than RSALA to train.

Evaluating attacker’s budget — We also seek to un-
derstand the effect of the attacker’s geographic constraint
(budget) on the robustness of the models. In order to do
so, we vary the definition of “neighbors” that the attacker

https://tinyurl.com/yc2uz7sv
https://tinyurl.com/yc2uz7sv
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can shift to. We increase the attacker’s budget gradually;
consider a crime in cell gi ∈ G and a budget of γ (say).
Such a budget would enable the attacker to move to any
cell gk ∈ G, such that gk and gi have at-most γ other
cells between them (a budget of γ = 0 reverts to stan-
dard models with no spatial shifts). With this notion of
attacker’s geographic budget, we repeat the entire set of
experiments. Our findings for the performance of vary-
ing attacker budget are consistent with our findings with
using the immediate neighborhood of a cell as potential
locations for shifts. Instead, we seek to visualize the pre-
dictions made by the forecasting models as we increase
the attacker’s ability (i.e., as the criminals move farther
away to commit crimes).

Specifically, we plot the spatial-temporal survival density
learned by varying the attacker’s budget as heat-maps
over the actual area under consideration. We generate
the heat maps by predicting incidents across all cells for
3 days, and we repeat this procedure 50 times to re-
duce variance in the predictions. We show the result-
ing images in Fig. 4, that are generated by attacker bud-
gets from 0 to 3. We see that as the attacker’s budget
increases, the forecasting models become increasingly
cognizant of potential crimes throughout the area under
consideration, resulting in a spatial distribution of inci-
dents that is spread out. An important insight revealed
by this experiment is that a very high attacker budget can
create models which essentially predict a high likelihood
of crime occurring throughout the area under considera-
tion, which is not necessarily useful in law-enforcement.
Therefore, we point out that the attacker’s budget is a

crucial hyper-parameter in our models and recommend
that system designers choose it carefully based on actual
capabilities of the attacker.

Performance on non-adversarial data — While adver-
sarial robustness of a model is considered solely in the
presence of an attacker, it is important to evaluate the
performance of the model on non-adversarial data. The
very nature of robustness in our context dictates that we
sacrifice performance on non-adversarial data to gain ro-
bustness against possible manipulation in attackers’ be-
havior. However, it is crucial to investigate the nuances
of this trade-off. To understand this, we sort the total set
of cells G according to frequency of incident arrival, and
divide the sorted set into 10 bins. The first bin consists
of cells with the lowest frequency of incidents, and so
on. Then, we assessed the difference between predicted
rates by standard models (SSA, SPR and SLR) and ro-
bust models (RSALA and AdGrad). To reduce variance
in our approach, we evaluated the rate of incident arrival
for each bin on 10 randomly chosen points in time from
the test set. We present the results for Poisson regression
in Figure 5 (our results are consistent across crime types
and regression models).

We see that in order to gain robustness, our algorithmic
approach underestimates incidents in cells with highest
frequency. This reduction is a result of potential spatial
shifts to cells with lower frequencies, on which our ap-
proach slightly over-estimates arrival rates than a base-
line model. This is expected; in fact, this is precisely
the behavioral change in attackers that we seek to cap-
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Figure 5: Difference in predicted rates between standard
and robust models

ture. However, if our approach severely under-estimates
the chances of potential crimes in cells with high fre-
quencies, it could be potentially detrimental to policing
strategies. We see that RSALA only underestimates fre-
quency at cells with comparatively higher crime rate by
about 0.04 incidents per hour to gain robustness. AdGrad
naturally underestimates the frequency to a lesser extent,
since it achieves lesser robustness.

7 Discussion

Broader Impact: There are several caveats to proac-
tive law-enforcement that should be mentioned. Specif-
ically, this area has faced numerous ethical issues in re-
cent years [7]. Proactive deployment of patrols can be
used to model possible environmental factors that are
correlated with higher crime rates. However, there are
two important factors that must be taken into account.
First, crime data may already be contaminated by ex-
isting patrol strategies, and a bias in patrol strategy can
affect outputs from algorithmic approaches. While this
might not be an issue in fighting poaching, illegal fishing
or logging in forests, it is certainly a matter of concern for
crimes in urban areas. Second, any approach that aims to
diversify the geographic spread of patrols increases con-
tact of citizens with law-enforcement authorities. While
this effect is a consequence of proactive strategies of de-
signing patrols in general [22], it is particularly true for

approaches that seek to model robustness against pos-
sible spatial shifts. This work is purely focused on a
methodological advance and our goal is solely to de-
velop an algorithmic framework for robustness in spatial-
temporal incident prediction. Our approach is motivated
by specific applications such as poaching, illegal log-
ging, illegal fishing, drug smuggling and human traffick-
ing. Although not our primary motivation, the methodol-
ogy we present can have implications for proactive law-
enforcement in general. However, as pointed out by
Mukhopadhyay et al. [7], proactive law-enforcement in
urban areas clearly faces ethical challenges. We strongly
recommend that practitioners carefully assess perception
and expectations from such policies [22, 23], as well as
its potential effects prior to deployment.

Conclusion: Spatial-Temporal incident prediction mod-
els have traditionally been agnostic to adversarial manip-
ulations in agent behavior in response to learned models.
We systematically bridge this gap by creating a princi-
pled nested optimization-based framework for predict-
ing incidents that is robust to such manipulations. We
frame the interaction between the defender and the at-
tacker as a Stackelberg game, and propose two algo-
rithmic approaches to solve the our problem. We show
how our approach can accommodate both continuous-
time and discrete-time (count-based as well as binary
response-based) predictive models. To this end, we form
optimization problems for accounting for spatial shifts in
Poisson regression, logistic regression, and survival anal-
ysis. Finally, we use two real-world datasets to evaluate
our approaches. Experimental results demonstrate that
our approach is significantly more robust to adversarial
manipulations than standard predictive models.
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