
Proceedings of Machine Learning Research vol 117:1–20, 2020 31st International Conference on Algorithmic Learning Theory

Interactive Learning of a Dynamic Structure

Ehsan Emamjomeh-Zadeh∗ ehsanez@fb.com
Facebook, Seattle, WA USA

David Kempe David.M.Kempe@gmail.com
Department of Computer Science, University of Southern California, Los Angeles, CA USA

Mohammad Mahdian mahdian@google.com
Google Research, New York, NY USA

Robert E. Schapire schapire@microsoft.com

Microsoft Research, New York, NY USA

Editors: Aryeh Kontorovich and Gergely Neu

Abstract

We propose a general framework for interactively learning combinatorial structures, such
as (binary or non-binary) classifiers, orderings/rankings of items, or clusterings, when the
underlying structure changes over time. Inspired by Angluin’s equivalence query model,
the algorithm proposes a structure in each round, and it either learns that its proposal
is the true structure in this round, or it observes a specific mistake in the proposal. The
feedback is correct only with probability 1−p, and adversarially incorrect with probability
p. The algorithm’s goal is to minimize its number of mistakes over the course of R rounds.

Our general framework is based on a graph representation of the structures and feedback
in a static environment, proposed by Emamjomeh-Zadeh and Kempe (2017). To be able
to learn efficiently, it is sufficient that there be a graph G whose nodes are the candidate
structures and whose (weighted) edges capture the possible feedback, satisfying a certain
natural shortest paths property.

To model the evolution of the underlying structure, we consider two natural models,
which we term the Shifting Target model and Drifting Target model. In the former, the true
structure always belongs to a small pool of candidate structures. In the latter, the structure
can change only by transitioning along the edges of a known evolution graph. In order to
achieve non-trivial results, we bound the total number of times the underlying structure
can change, denoted by B. We provide upper and lower bounds on the number of mistakes,
which depend on the total number of changes B, the total number of structures n, and
natural measures of complexity of the dynamic models: the size of the pool of candidate
structures in the Shifting Target model, and the maximum degree of the evolution graph
in the Drifting Target model.

1. Introduction

We consider the task of interactively learning a combinatorial structure, such as a classifier,
ranking, or clustering, when the structure itself evolves over time. The point of departure
for our work is the equivalence query model of Angluin (1988), and its recent generalization

∗ Participated in this work while being at Department of Computer Science, University of Southern Cali-
fornia, Los Angeles, CA, USA.

c© 2020 E. Emamjomeh-Zadeh, D. Kempe, M. Mahdian & R.E. Schapire.

Interactive Learning of a Dynamic Structure

to learning combinatorial structures by Emamjomeh-Zadeh and Kempe (2017). In this
generalized framework, the learner repeatedly proposes a structure, and receives feedback
in the form of a “local correction” that makes the structure more similar to the ground
truth, called target structure by Emamjomeh-Zadeh and Kempe (2017). The goal in the
static model is to minimize the number of rounds of interactions (which is equal to the
number of mistakes) until the learner has identified the target structure.

As a concrete example, consider a search engine interacting repeatedly with a user or
population of users. With each interaction (in the form of a concrete query), the search
engine proposes a ranking of a fixed set of items (with respect to the query); it then receives
feedback in the form of a user clicking on a lower-ranked page instead of (or before) clicking
on a higher-ranked one. The implication of this interaction is that the item which was clicked
preferentially should be ranked ahead of all the items the user skipped (Joachims, 2002;
Radlinski and Joachims, 2005); this constitutes a “local” correction that would improve the
learner’s ranking. In the general model of Emamjomeh-Zadeh and Kempe (2017) (described
in more detail in Section 2), there is a known graph G whose nodes are all structures (i.e.,
the search space), and whose edges capture the possible responses. For the concrete example
of the search engine, the nodes are all rankings (permutations) of the pages, and there is
an edge from a permutation π to µ if and only if µ can be obtained by moving one element
of π ahead by one or more positions.

Emamjomeh-Zadeh and Kempe (2017) show that as long as the graph G satisfies a cer-
tain shortest-path property with respect to the responses the learner may receive, a learner
can interactively find the target structure in a number of rounds that is logarithmic in the
number of possible candidate structures. This result holds even when each response is, with
probability p < 1

2 , adversarially incorrect. Subsequently, Dereniowski et al. (2019) general-
ized this result to fully adversarial noise. Applied to the concrete example of rankings, these
results imply that under the given feedback model, a learner can identify the target ranking
in O(n log n) rounds, even in the presence of random or adversarial noise. In addition, the
framework naturally recovers past results on learning a classifier or a clustering (Balcan and
Blum, 2008; Awasthi and Zadeh, 2010; Awasthi et al., 2017).

The main novel aspect of our work is that we consider the general interactive learning
problem in a setting where the target may evolve over time. Such changes in the target
may naturally occur due to a number of reasons.

First, the learner may be interacting with a population of users (such as multiple people
sharing the same computer and thus the same search engine or recommendation system)
rather than a single user. In this case, there will be a (small) set of target structures, and
each user response — when not noisy — is consistent with one of the structures, but the
specific structure may change between rounds. We call the resulting model (defined formally
in Section 2.2.1) the Shifting Target Model. As we discuss more in Section 6, this model
resembles the Shifting Expert Advice problem (see, e.g., Bousquet and Warmuth (2002)).

Second, the target structure may gradually evolve. For instance, a user’s preferred
ranking of web pages or pieces of music may change over time. While the overall set of
candidate structures may be large, in each round, the structure will only change slightly.
We can model such a gradual evolution by assuming that there is an evolution graph G′

on all structures; from one round to the next, the target structure can only change from a

2

Interactive Learning of a Dynamic Structure

structure to a neighboring structure in G′. We call this model (defined in Section 2.2.2) the
Drifting Target Model.

1.1. Our Contribution

We provide learning algorithms for both the Shifting Target and Drifting Target models, in
the general interactive learning framework of Emamjomeh-Zadeh and Kempe (2017). The
algorithms should minimize the number of mistakes over the R rounds, and ideally, each
prediction should be computed efficiently in the size of the graph (independently of the
number of rounds).

Here, we informally state the main results of our work; see Sections 4 and 5 for formal
statements and proofs. In the theorem statements, n is the number of candidate structures,
B is an upper bound on the number of times that the underlying target structure changes,
and p is the probability of receiving incorrect answers to queries.

Theorem 1 (Informal) Consider the Shifting Target model in which the target structure
can shift only within an (unknown) set of at most k structures. There exists an “almost

efficient” deterministic learning algorithm1 that makes at most 1
1−H(p) ·

(
k · log n+B · log k+

R · H(B/R)
)

mistakes in expectation, where H(p) = p log 1
p + (1 − p) log 1

1−p denotes the

entropy.
In the worst case, every algorithm for this problem (including inefficient or randomized

algorithms) makes at least 1
1−H(p) ·

(
k · log n+B · log k

)
mistakes in expectation.

Theorem 2 (Informal) Consider the Drifting Target model in which the target structure
moves along the edges of an evolution graph G′ with maximum degree ∆. There exists an

efficient deterministic algorithm that makes at most 1
1−H(p) ·

(
log n+B · log ∆+R ·H(B/R)

)
mistakes in expectation. Every algorithm for this problem (even inefficient or randomized

ones) makes at least 1
1−H(p) ·

(
log n+B · log ∆

)
mistakes in expectation.

In order to prove our lower bounds, in Appendix A, we show a lower bound on the
expected query complexity of the classic binary search problem on a sorted array. While
Ben-Or and Hassidim (2008) show a lower bound that holds with high probability, that
bound does not exactly provide the kind of bounds that we need.

1.2. Related Work

The model of Emamjomeh-Zadeh and Kempe (2017), and by extensions ours, is based on
the equivalence query model of Angluin (1988). The equivalence query model is known to
be equivalent to the Online Learning model of Littlestone (1988). Both models focus on
learning a (binary) classifier; a large amount of follow-up work has studied this problem.

Interactive learning of a combinatorial structure can be considered as a version of the
Multi-Armed Bandit problem or the Expert Advice problem. Each candidate structure
corresponds to one arm (or expert). In every round, the loss associated with the target

1. The running time is exponential in k, but no other parameters.

3

Interactive Learning of a Dynamic Structure

structure is 0, while the loss of every other arm is 1. Then, the total loss of any algorithm is
the number of mistakes it makes. In our model, the learner does not receive full information
about all the experts; rather, it observes the loss of its prediction as well as “directional”
feedback to the good expert of this round, both through a noisy channel.

A model with superficially similar flavor, which lies between the Expert Advice problem
and the Multi-Armed Bandit problem, is the Graph Feedback model (see, e.g., (Alon et al.,
2015, 2017)). In this model, the arms/experts are also the nodes of a graph. In each round,
the learner observes the loss of the chosen arm as well as the loss of each of its neighbors.
Notice that the graph plays very different roles in the Graph Feedback model and in our
model: in the Graph Feedback model, it captures observability of rewards, while in our
model, it provides directional information.

Active learning of a permutation which evolves throughout the learning process has
been studied in a closely related model by Anagnostopoulos et al. (2011); Besa Vial et al.
(2018b,a). In their models, the learner actively chooses pairs of items to compare. In
contrast, in our model, the mistake in the permutation that is revealed to the learner is
chosen by an adversary. Furthermore, we treat the problem in the more general setting of
learning a general combinatorial structure.

A model very similar to our Shifting Target model was considered by Deligkas et al.
(2017). In their model, however, a target is chosen randomly from a small pool with respect
to a fixed distribution. They show that if one node is more likely to be the target than
all other nodes combined, one can identify this specific target in a logarithmic number of
rounds. Their focus is on learning the identity of one target (or more targets, under extra
assumptions), rather than minimizing the number of mistakes over a long sequence.

2. Preliminaries, Definitions, and Models

We let H(X) denote the entropy of the random variable X . We also overload this notation
and for every 0 < α < 1, we define H(α) = α log 1

α + (1 − α) log 1
1−α as the entropy of a

coin flip with probability α. For convenience, we define H(0) = H(1) = 0. All logarithms
are base 2 unless explicitly stated otherwise.

Weighted graphs (directed or undirected) are denoted by G = (V,E, ω), where ω : E →
R+ denotes the edge weights, which will always be strictly positive here. For unweighted
graphs, we omit ω.

For every undirected graph G and every node v in G, NG(v) denotes the set of neighbors
of v in G. If G is a directed graph, N in

G (v) and Nout
G (v) are the set of nodes with an edge

to v and the set of nodes with an edge from v, respectively. For an undirected connected
and possibly weighted graph G = (V,E, ω) and a pair of adjacent nodes u, v in G, SG(u, v)
denotes the set of all nodes in G with a shortest path from u that starts with the edge (u, v).
More formally, SG(u, v) = {w ∈ V | dG(u,w) = ωG(u, v)+dG(v, w)}, where dG(u, v) denotes
the distance from u to v in G. For notational convenience, we define SG(u, u) = {u}. When
the graph G is clear from the context, we will omit the subscript G from the preceding
notation.

4

Interactive Learning of a Dynamic Structure

2.1. The Basic Interactive Learning Framework

Our algorithms and analysis are cast in the framework of Emamjomeh-Zadeh and Kempe
(2017), which generalizes Angluin’s Equivalence Query model (Angluin, 1988) from learning
a classifier to learning more general discrete structures, such as permutations, clusterings,
and others. We begin with a description of this framework for the case of a static structure
and no noise.

In the framework of Emamjomeh-Zadeh and Kempe (2017), all candidate structures
comprise the vertices of an undirected, connected, and possibly weighted, graph G =
(V,E, ω). The edges E exactly capture the possible corrections that a learner can receive
in response to a prediction, and the weights ω can be chosen by the algorithm designer.
The graph G is known to the learner, but the structure to be learned, called the target and
denoted by t, is an unknown node in G. In each round r, the learner predicts (or queries)2

a node qr. If the prediction is not the target, the learner observes the first edge of one of the
shortest paths from qr to t. If there are multiple shortest paths from qr to t, the response
is chosen adversarially. More formally, the response in round r is a node zr ∈ {qr} ∪N(qr)
such that t ∈ S(qr, zr). We say that a node v is consistent with this response in round r if
v ∈ S(qr, zr), i.e., the response alone does not rule out the possibility that v is the target.

In order to apply this framework to a concrete learning problem, the algorithm designer
gets to design the weights ω such that the “natural” responses that a user would provide
satisfy the preceding definition of the process. Emamjomeh-Zadeh and Kempe (2017) show
how to define suitable weights for learning classifiers, permutations, or clusterings, under
several natural models of interaction. As a particularly straightforward illustration, con-
sider Angluin’s original task of learning a binary classifier of m items (Angluin, 1988), when
in each round, the learner observes a label correction for exactly one wrongly classified item.
Then, a suitable graph structure is the unweighted m-dimensional hypercube: each correc-
tion exactly corresponds to an edge of the hypercube along the corresponding dimension,
and lies on one of the shortest paths to the fully corrected classifier.

A more interesting application of the framework of Emamjomeh-Zadeh and Kempe
(2017) is learning a ranking, as discussed in Section 1. Consider a recommendation system
that presents a list of m items to a user in each round. If the user skips an item and clicks on
the next one, the learner infers that the two items are in incorrect order. Emamjomeh-Zadeh
and Kempe (2017) showed that the following undirected and unweighted graph satisfies the
shortest-path property: the nodes of G are the permutations over the m items, and two
nodes are connected if one permutation is obtained from the other one by an adjacent
swap. The graph structure can be naturally extended, using non-uniform edge weights, to
an interaction model where a user may be skipping more than one item.

Let L : V → R≥0 be a function that assigns a non-negative “likelihood” to every node.3

Let Λ =
∑

v∈V L(v) be the total likelihood of all nodes. A median of the graph G with
respect to L is a node u that minimizes

∑
v∈V L(v)d(u, v). Because G is connected and all

edge weights are positive, there always is at least one median. The following proposition is
immediate from the definition.

2. We use the two terms interchangeably.
3. Informally speaking, the likelihoods indicate the learner’s belief about the target, but they do not

necessarily capture likelihood in a precise mathematical sense.

5

Interactive Learning of a Dynamic Structure

Proposition 3 If L(u) > Λ
2 for a node u, then u is the unique median.

The following Lemma 4 is the key result in (Emamjomeh-Zadeh et al., 2016) (utilized
by Emamjomeh-Zadeh and Kempe (2017)). The lemma basically states that if a median of
the graph is queried and the response is one of its neighbors, then the total likelihood of
the nodes consistent with this response is at most Λ

2 .

Lemma 4 (Lemma 4 of (Emamjomeh-Zadeh et al., 2016)) Let u be a median of G
and v 6= u a neighbor of u. Then

∑
w∈S(u,v) L(w) ≤ Λ

2 .

2.2. The Learning Model for Dynamic Structures

In the (static) model of Emamjomeh-Zadeh and Kempe (2017), the target node t never
changes. The main modeling contribution in the present work is that we allow the target
to change. The learning process proceeds over the course of R rounds. For every round
1 ≤ r ≤ R, there is a target node tr ∈ V . We assume that during the R rounds, the target
changes at most B times. More formally, |{1 ≤ r < R | tr+1 6= tr}| ≤ B.

As in the static model, the graph G is known to the learner, but the targets are not. In
every round r, the learner predicts/queries a node qr ∈ V . In response, it either learns that
its prediction in this round is correct (i.e., qr = tr) or, if this is not the case, it observes the
first edge of a shortest path from qr to tr in G. As in the static model, if there are multiple
edges incident on qr that lie on shortest paths from qr to tr, any of them could be returned;
in particular, the response can be adversarial. Formally, the response in round r, denoted
by zr, is an adversarial node in {qr} ∪NG(qr) such that tr ∈ SG(qr, zr). If qr 6= tr, we say
that the algorithm has made a mistake in round r.

If we place no assumptions on the way in which the target can move in G, only trivial
bounds on the number of mistakes are possible. We therefore next present two natural
restrictions on the moves of tr, which will allow us to prove stronger mistake bounds.

2.2.1. The Shifting Target Model

The Shifting Target model aims to model scenarios where the learner interacts with a small
population of users (or a population with only a small number of types of users), each of
whom has a possibly different structure. The learner does not know between consecutive
rounds whether it is still interacting with the same user or a different one.

More formally, there exists an unknown set T ⊆ V of (known) size at most k, such that
tr ∈ T for every 1 ≤ r ≤ R. In other words, the target only moves within the set T .

2.2.2. The Drifting Target Model

The Drifting Target model models scenarios where there is only one user (or the users share
the same structure), but the structure slowly evolves over time. As an example, think about
a ranking capturing a user’s music preferences or preferred order of search results; either is
wont to evolve over time.

We model the slow evolution as follows. There exists a known directed unweighted
evolution graph G′ = (V,E′) (on the same set of nodes V), such that for every 1 < r ≤ R,
tr ∈ {tr−1} ∪Nout

G′ (tr−1). In other words, the target can only move along the edges of G′.

6

Interactive Learning of a Dynamic Structure

G′ need not be connected. We assume that G′, like G, is known to the learner; however,
we explicitly allow for G′ 6= G.4 We write ∆ = maxv∈V |{Nout

G′ (v)} ∪ {v}| for the maximum
out-degree of any node in G′ (implicitly assuming that every node has at least a self-loop).

2.3. Noise

To model the possibility that a user simply provides a wrong answer in response to a query,
we follow Emamjomeh-Zadeh and Kempe (2017) and allow for noisy responses. Each query
response is incorrect with probability p, independently of the responses for all other rounds.
In the case when the response is (randomly) chosen to be incorrect, the actual response is
adversarial. That is: whether a query response is noisy or not is random, but conditioned
on being incorrect, the query response itself is adversarially altered. We assume that p is
a constant known to the learner. It is easy to see (as pointed out by Emamjomeh-Zadeh
et al. (2016)) that if p ≥ 1

2 , it is impossible to achieve any non-trivial result, even if the
target does not move. Hence, we assume throughout that p < 1

2 .

3. A Generic Mistake Bound

In this section, we present a generic result that is applicable to both the Shifting Tar-
get and Drifting Target models, as well as more general models of moving targets. The
generic learning algorithm, however, is not computationally efficient. In later sections, we
show how the more specific Shifting Target and Drifting Target models facilitate efficient
implementations of the algorithm.

Let G = (V,E, ω) be an undirected connected and weighted graph and a∗ = 〈t1, . . . , tR〉
the unknown true sequence of targets throughout the R rounds. Recall that p denotes the
probability of incorrect responses.

Theorem 5 Let A = V R be the set of all node sequences of length R. Let λ : A→ R≥0 be
a function that assigns non-negative weights to these sequences, such that

∑
a∈A λ(a) ≤ 1.

There is an online learning algorithm which makes at most 1
1−H(p) · log 1

λ(a∗) mistakes in
expectation.

Each sequence a ∈ A can be considered as “recommending” a node to query in each
of the R rounds. Inspired by the classic Hedge algorithm, we consider each sequence as
a meta-expert and keep track of a weight for each. However, in contrast to the standard
Hedge analysis, simply drawing a random meta-expert in every round according to their
weights and outputting its recommendation does not guarantee the bound of Theorem 5.
Instead, we utilize the “directional” information in G provided by the shortest-path pointers
which the algorithm receives. We adapt an idea from (Emamjomeh-Zadeh et al., 2016) to
guarantee that after each mistake the algorithm makes, the relative weight of a∗ increases
significantly. Unlike the Hedge algorithm, our algorithm is deterministic.

A direct adaptation of the analysis of Emamjomeh-Zadeh et al. (2016) results in a
mistake bound of 1

λ(a∗) +R ·H(B/R) for our problem. We modify this analysis in order to

prove the bound of Theorem 5; this bound is tight in general (e.g., for the case when the
target does not move), as pointed out by Emamjomeh-Zadeh et al. (2016).

4. The case G′ = G raises a lot of interesting questions for future work, and is discussed in Section 6.

7

Interactive Learning of a Dynamic Structure

Proof For every 1 ≤ r ≤ R + 1, the algorithm assigns a weight λr(a) to every sequence
a ∈ A. Initially, λ1(a) = λ(a) as given in the input. Define Λr =

∑
a∈A λr(a) to be total

weight of all sequences in round r. For the purpose of analysis, we define λ̂r(a) = log λr(a)
for every sequence a ∈ A and similarly, Λ̂r = log Λr. Moreover, we assign a “likelihood”
Lr(v) to every node v in every round r, which is essentially the total weight of the sequences
which recommend v in round r. Formally, Lr(v) =

∑
a∈A(λr(a) · 1[ar = v]).

In every round 1 ≤ r ≤ R, the algorithm’s prediction is a median of G with respect to
Lr(·). Let qr and zr denote the prediction of the algorithm and the response it receives,
respectively. The algorithm then computes the weights of the sequences for the next round
as follows. If the recommendation of the sequence a in round r is consistent with the
response zr, the weight of a is multiplied by 1 − p. Otherwise, it is multiplied by p. More
formally, λr+1(a) = (1−p) ·λr(a) if ar ∈ S(qr, zr), and λr+1(a) = p ·λr(a) otherwise. Recall
that if qr = zr, then qr itself is the only node that is consistent with the response, i.e.,
S(v, v) = {v}.

Lemma 6 For every 1 ≤ r ≤ R, E[λ̂r+1(a∗)− λ̂r(a∗)] ≥ −H(p).

Proof. In every round r, the response is correct with probability at least 1−p. In this case,
the recommendation of a∗ is consistent with the response; hence, λr+1(a∗) = (1−p) ·λr(a∗),
which implies that λ̂r+1(a∗) = λ̂r(a

∗) + log(1 − p). In the other case, due to the noise,
the recommendation of a∗ may or may not be consistent with the response. Because at
worst, the weight is multiplied with p, we obtain the bound that λr+1(a∗) ≥ p · λr(a∗), i.e.,
λ̂r+1(a∗) ≥ λ̂r(a∗) + log p. By combining both cases, we get that

E[λ̂r+1(a∗)] ≥ (1− p) ·
(
λ̂r(a

∗) + log(1− p)
)

+ p ·
(
λ̂r(a

∗) + log p
)

= λ̂r(a
∗)−H(p).

Now, summing over all R rounds, we obtain that

E[λ̂R+1(a∗)] ≥ log λ(a∗)−R ·H(p). (1)

Having obtained a lower bound on the weight of a∗ at the end of the R rounds, we now
prove an upper bound on Λ̂R+1. For each round 1 ≤ r ≤ R, one of the following three
scenarios happens.

(a) In round r, each node v has Lr(v) ≤ Λr
2 . By Lemma 4 and because of the way the

algorithm updates the weights (as in the analysis of Emamjomeh-Zadeh et al. (2016)),
Λr+1 ≤ Λr

2 and thus, Λ̂r+1 − Λ̂r ≤ −1.

(b) In round r, there is a node v 6= a∗r with Lr(v) > Λr
2 . By Proposition 3, v is the unique

median and hence the algorithm’s prediction. However, v 6= a∗r , so v is not the correct
target in this round. Define β = Lr(v)/Λr. By the assumption, 1

2 < β ≤ 1. With
probability (1 − p), the response is correct. In this case, v is not consistent with the
response, and therefore

Λr+1 ≤ p · Lr(v) + (1− p) · (Λr − Lr(v)) = Λr ·
(
p · β + (1− p) · (1− β)

)
.

8

Interactive Learning of a Dynamic Structure

Taking logarithms, this implies that Λ̂r+1 − Λ̂r ≤ log
(
p · β + (1− p) · (1− β)

)
. With

the remaining probability, the response is adversarially incorrect. Importantly, it is
impossible that both node v and some other node in the graph are consistent with
the response. Because both (1 - p) and β are larger than 1

2 , the smallest reduction
in Λ is achieved by having v be consistent with the response. Hence, in this case, we
obtain the following upper bound:

Λr+1 ≤ (1− p) · Lr(v) + p · (Λr − Lr(v)) = Λr

(
(1− p) · β + p · (1− β)

)
.

By taking logarithms, we obtain the bound Λ̂r+1− Λ̂r ≤ log
(

(1− p) · β+ p · (1− β)
)

.

Combining the two cases, we get that

E[Λ̂r+1 − Λ̂r] ≤ (1− p) · log
(
p · β + (1− p) · (1− β)

)
+ p · log

(
(1− p) · β + p · (1− β)

)
.

For every 0 < p < 1
2 and 1

2 ≤ β ≤ 1, the derivative with respect to β is always
negative, meaning that the expression is maximized when β = 1

2 . Plugging this value

of β into the inequality, we get that E[Λ̂r+1 − Λ̂r] ≤ −1.

(c) The final case is that in round r, Lr(a∗r) > Λr
2 . By Proposition 3, a∗r is the unique

median and hence, the algorithm’s prediction. In this case, the algorithm does not
make a mistake (i.e., its prediction is the true target). Define β = Lr(a∗r)/Λr. Similar
to scenario (b), we consider two cases, based on whether the response is correct or not.
With probability 1− p, the response is correct; it then confirms that the algorithm’s
prediction is correct, and we have

Λr+1 = (1− p) · Lr(a∗r) + p · (Λr − Lr(a∗r)) = Λr ·
(

(1− p) · β + p · (1− β)
)
.

If the response is incorrect, we can again reason as in the scenario (b), and obtain
that

Λr+1 ≤ p · Lr(a∗r) + (1− p) · (Λr − Lr(a∗r)) = Λr

(
p · β + (1− p) · (1− β)

)
.

Taking logs and combining both cases, we get that

E[Λ̂r+1 − Λ̂r] ≤ p · log
(
p · β + (1− p) · (1− β)

)
+ (1− p) · log

(
(1− p) · β + p · (1− β)

)
.

This time, for every 0 < p < 1
2 and 1

2 ≤ β ≤ 1, the derivative with respect to β is

positive; therefore, the expression is maximized at β = 1. Thus, E[Λ̂r+1−Λ̂r] ≤ −H(p).

Let M denote the number of rounds in which either scenario (a) or (b) happens. M is
an upper bound on the number of mistakes of the algorithm, and our preceding analysis
shows that

E[Λ̂R+1] ≤ −M − (R−M) ·H(p). (2)

9

Interactive Learning of a Dynamic Structure

Combining Inequalities (1) and (2) and using the fact that Λ̂R+1 ≥ λ̂R+1(a∗) (hence,
E[Λ̂R+1] ≥ E[λ̂R+1(a∗)]), we can now complete the proof by bounding

−M − (R−M) ·H(p) ≥ log λ(a∗)−R ·H(p),

which can be rearranged to M ≤ 1
1−H(p) log 1

λ(a∗) .

The algorithm we presented in this section explicitly keeps track of weights for all se-
quences in A. If the target does not move, the number of valid sequences cannot exceed the
number of the nodes, which allows for an efficient implementation. However, with a moving
target, there may be exponentially many sequences. In Sections 4 and 5, we discuss how
to implement this algorithm more efficiently for the Shifting Target and Drifting Target
models, by carefully choosing the function λ(·). Here, we say that an algorithm is compu-
tationally efficient if it computes its prediction in each round computationally efficiently.

4. Results for the Shifting Target Model

In this section, we provide a more efficient implementation of the learning algorithm for
the Shifting Target Model, as well as a lower bound on the number of mistakes that any
learning algorithm must make in this model.

Theorem 7 Under the Shifting Target model, there is a deterministic algorithm that runs

in time O(nk poly(n)) and makes at most 1
1−H(p) ·

(
k log n + (B + 1) log k + R · H(B/R)

)
mistakes in expectation.

Proof We adapt the algorithm of Theorem 5. Let Sk denote the collection of all subsets
of V of size k. Consider the following random procedure to generate a sequence a of length
R. In the following description, b ∈ [0, 1] is a constant, to be determined momentarily.

1. Pick a set X in Sk uniformly at random.

2. Pick an initial node a1 ∈ X uniformly at random.

3. For every 2 ≤ r ≤ R, let ar = ar−1 with probability (1 − b); with the remaining
probability, ar is chosen uniformly at random from X.

For a sequence a, let Θ(a) ⊆ Sk denote the collection of all sets of (exactly) k nodes that
are supersets of the support of a. If the support size of a is larger than k, then Θ(a) = ∅; if
it is k, then |Θ(a)| = 1. If the sequence’s support is smaller than k, then |Θ(a)| > 1. Notice
that the random procedure can only generate a when it chooses X ∈ Θ(a).

As in Theorem 5, let A = V R. For every sequence a ∈ A, let λ(a) be the probability that
a is generated by the random procedure described above. In particular, if a has support
larger than k, the probability is λ(a) = 0. Because λ(·) is a probability distribution,∑

a∈A λ(a) = 1. And because the true sequence a∗ shifts at most B times, λ(a∗) ≥
(
n
k

)−1 ·
1
k · (

b
k)B · (1 − b)R−B. Letting b = B

R and applying Theorem 5 gives us the mistake bound
of Theorem 7.

In order to bound the running time, we present a more efficient way to implement the
algorithm of Theorem 5. The key insight is that in order to run the algorithm, one only needs

10

Interactive Learning of a Dynamic Structure

to compute, in each round, the likelihood of each node. Fix some set U ∈ Sk of k nodes,
and let AU denote the set of all length-R sequences with support U . For every node u ∈ U
and every round 1 ≤ r ≤ R, let Lr,U (u) =

∑
a∈AU

λr(a)
|Θ(a)|1[ar = u] be the “contribution” of

sequences in AU in round r to the likelihood of node u. Our faster implementation of the
algorithm does not keep track of λr(a) for every sequence a ∈ A. Instead, in every round
1 ≤ r ≤ R, it computes Lr,U (u) for every U ∈ Sk and u ∈ U . This is sufficient to compute
the cumulative likelihood Lr(u) =

∑
U3u Lr,U (u) for every node u. In turn, the Lr(u) are

sufficient for computing the median of the graph.
We now show how to inductively compute the Lr,U (u) for a fixed set U and every u ∈ U .

For the base case, because the first node is picked uniformly at random, L1,U (u) =
(
n
k

)−1 · 1k .
Now assume that for some round r, the algorithm has already computed Lr,U (u) for all
nodes u. As explained above, it can then compute the median qr. As before, let zr denote
the response. For each u ∈ U , if u is consistent with the response, then, according to
the description of the algorithm, the weight of every sequence a ∈ AU with ar = u is
multiplied by 1−p. Otherwise, the weight of every such sequence is multiplied by p. Define

intermediate variables L′r,U (u) = Lr,U (u) ·
(

(1− p) · 1[u ∈ S(qr, zr)] + p · 1[u /∈ S(qr, zr)]
)
.

By the definition of the random generative process for sequences, each sequence stays at
the same node with probability 1− b, and shifts to a uniformly random node in U with the
remaining probability b. Therefore, the likelihood of the nodes for the next round can be
computed as follows: Lr+1,U (u) = (1− b) · L′r,U (u) +

∑
v∈U

b
k · L

′
r,U (v). This implementation

of the algorithm requires memory of size
(
n
k

)
∈ O(nk), and the running time is O(nk poly n),

as claimed.

Remark 8 Notice a perhaps interesting feature of our analysis. While the shifts of the
target are entirely adversarial (subject to the bound on the support size and the total number
of shifts), our analysis essentially “pretends” that the target performs a random walk over
a uniformly random target set of size k. Despite this “incorrect” shifting model, it achieves
the same mistake bound as Theorem 5.

Remark 9 This algorithm needs to know k ahead of time in order to properly keep track
of the likelihoods. When k is not known ahead of time, there is a slightly different random
procedure for generating random sequences which results in essentially the same bound as
that of Theorem 7. This random procedure is similar to the one we explained in this sec-
tion. Instead of picking X from Sk, X is a random set such that each node belongs to X
independently with probability 1

n . The näıve implementation of our algorithm using this new
random procedure, however, requires explicitly enumerating all sequences of length R. We
do not know of any more computationally efficient implementation at this time.

Next, we state a lower bound on the number of mistakes for any algorithm (deterministic
or randomized, efficient or not) in the Shifting Target model. The proof of Theorem 10 is
presented in Appendix A.

Theorem 10 For every pair of positive integers k and m, there exists an undirected, con-
nected and unweighted graph G on a set of n = km nodes such that under the Shifting Target

11

Interactive Learning of a Dynamic Structure

model, every (possibly randomized and/or computationally inefficient) algorithm makes at
least

min{R− o(R),
1

1−H(p)
·
(
k log n+ (B − 2k + 1) · (log k)

)
− o(log n)−B · o(log k)}

mistakes, in expectation.

The lower bound of Theorem 10 does not quite match the upper bound of Theorem 7;
there is an additive gap of essentially R·H(B/R)

1−H(p) . This gap is most relevant when k is small.
Whether our upper bound is tight or not remains open.

5. Results for the Drifting Target Model

In this section, we state a theorem regarding an improved implementation of the learning al-
gorithm from Section 3 for the Drifting Target Model. The theorem is proved in Appendix B.
Unlike the implementation in Section 4, here, we actually achieve a polynomial-time imple-
mentation. Recall that ∆ is the maximum degree of the evolution graph G′.

Theorem 11 Under the Drifting Target model, there is a polynomial-time deterministic

learning algorithm which makes at most 1
1−H(p) ·

(
log n+B · log ∆ +R ·H(B/R)

)
mistakes

in expectation.

Similar to Section 4, we also state a lower bound, which leaves an additive gap of
R·H(B/R)

1−H(p) . The proof is given in Appendix A.

Theorem 12 For every pair of positive integers ∆ and m, there exist undirected un-
weighted graphs G and G′ over the same set of n = ∆ ·m nodes such that G is connected,
the evolution graph G′ is ∆-regular (with a self-loop for every node), and every (possi-
bly randomized or inefficient) algorithm under the Drifting Target model makes at least

min{R− o(R), 1
1−H(p) ·

(
log n+B · log ∆

)
− o(log n)−B · o(log ∆)} mistakes in expectation.

6. Conclusions and Future Work

In this work, we presented algorithms for learning a structure (such as a classifier, permuta-
tion, or clustering) which evolves over time. For the Shifting Target and the Drifting Target
models, we showed how to produce more efficient implementations. Under both models,
our bounds are off from each other by an additive gap of essentially R · H(B/R). Closing
this gap is an interesting direction for future work. We conjecture that the upper bound is
tight.

The computational complexity of the algorithm for the Shifting Target model is not
polynomial in the size of the graph, and it is an interesting direction to find an efficient
implementation. The algorithm of Theorem 7 is similar to the “direct” algorithm discussed
by Bousquet and Warmuth (2002) (attributed there to Yoav Freund). It is worth mention-
ing that in the noiseless setting, we can develop a polynomial-time algorithm by essentially
reducing this problem to a two-player game in which the first player’s choices are the nodes

12

Interactive Learning of a Dynamic Structure

and the second player’s choices are the edges (technical details of the reduction and the
algorithm are skipped). For the noisy setting, however, it is more complex: the “loss” of
the learner depends on whether it queries the target or not; a predicate whose true value is
not observed by the learner.

In this work, we focused on 0-1 loss: the algorithm’s loss is 1 in a round if it does not
guess the correct target. One can consider other natural loss functions. For example, a
natural measure of loss would be the distance dG(qr, tr) in G from qr to the target. This
loss function is well-motivated in the context of interactive learning: the further the guess
is from the true target, the more unsatisfied a user will be. It is not clear whether our
techniques carry over to this or other loss functions.

One particularly interesting direction for future work arises when the two graphs G and
G′ in the Drifting Target model are the same; that is, the notion of “similarity” governing a
user’s responses is the same as the notion of “similarity” governing the structure’s evolution
over time. If we relax the notion of a “mistake” to count a guess as correct whenever it is
within some small distance (such as O(log n)) of the target, one can achieve mistake bounds
that are independent of the total number of rounds: once the target has been approximately
found, the algorithm can always follow the responses it receives and stay within the same
distance. However, it is not clear how quickly an algorithm can get within distance O(log n)
of a moving target for the first time. Designing an algorithm for this case is a very intriguing
question that may have to draw on deeper insights into the graph’s structure.

Acknowledgments

EE and DK were supported in part by NSF grant IIS-1619458 and ARO MURI grant
72924-NS-MUR. Thanks to Haipeng Luo for several very helpful discussions.

References

Noga Alon, Nicolo Cesa-Bianchi, Ofer Dekel, and Tomer Koren. Online learning with
feedback graphs: Beyond bandits. In Journal of Machine Learning Research, volume 40,
2015.

Noga Alon, Nicolo Cesa-Bianchi, Claudio Gentile, Shie Mannor, Yishay Mansour, and Ohad
Shamir. Nonstochastic multi-armed bandits with graph-structured feedback. SIAM Jour-
nal on Computing, 46(6):1785–1826, 2017.

Aris Anagnostopoulos, Ravi Kumar, Mohammad Mahdian, and Eli Upfal. Sorting and
selection on dynamic data. Theoretical Computer Science, 412(24):2564–2576, 2011.

Dana Angluin. Queries and concept learning. Machine Learning, 2:319–342, 1988.

Pranjal Awasthi and Reza Bosagh Zadeh. Supervised clustering. In Proc. 24th Advances
in Neural Information Processing Systems, pages 91–99, 2010.

Pranjal Awasthi, Maria-Florina Balcan, and Konstantin Voevodski. Local algorithms for
interactive clustering. Journal of Machine Learning Research, 18:1–35, 2017.

13

Interactive Learning of a Dynamic Structure

Maria-Florina Balcan and Avrim Blum. Clustering with interactive feedback. In Proc. 19th
Intl. Conf. on Algorithmic Learning Theory, pages 316–328, 2008.

Michael Ben-Or and Avinatan Hassidim. The bayesian learner is optimal for noisy binary
search (and pretty good for quantum as well). In Proc. 49th IEEE Symp. on Foundations
of Computer Science, pages 221–230, 2008.

Juan José Besa Vial, William E. Devanny, David Eppstein, Michael T. Goodrich, and Tim-
othy Johnson. Optimally sorting evolving data. In Proc. 45th Intl. Colloq. on Automata,
Languages and Programming, pages 81:1–81:13, 2018a.

Juan José Besa Vial, William E. Devanny, David Eppstein, Michael T. Goodrich, and
Timothy Johnson. Quadratic time algorithms appear to be optimal for sorting evolving
data. In 2018 Proceedings of the Twentieth Workshop on Algorithm Engineering and
Experiments (ALENEX), pages 87–96, 2018b.

Olivier Bousquet and Manfred K. Warmuth. Tracking a small set of experts by mixing past
posteriors. Journal of Machine Learning Research, 3:363–396, 2002.

Argyrios Deligkas, George B. Mertzios, and Paul G. Spirakis. Binary search in graphs
revisited. In Mathematical Foundations of Computer Science, pages 20:1–20:14, 2017.

Dariusz Dereniowski, Daniel Graf, Stefan Tiegel, and Przemys law Uznański. A framework
for searching in graphs in the presence of errors. In Symposium on Simplicity in Algo-
rithms, 2019.

Ehsan Emamjomeh-Zadeh and David Kempe. A general framework for robust interactive
learning. In Proc. 31st Advances in Neural Information Processing Systems, pages 7085–
7094, 2017.

Ehsan Emamjomeh-Zadeh, David Kempe, and Vikrant Singhal. Deterministic and prob-
abilistic binary search in graphs. In Proc. 48th ACM Symp. on Theory of Computing,
pages 519–532, 2016. ISBN 978-1-4503-4132-5.

Thorsten Joachims. Optimizing search engines using clickthrough data. In Proc. 8th Intl.
Conf. on Knowledge Discovery and Data Mining, pages 133–142, 2002.

Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning, 2:285–318, 1988.

Filip Radlinski and Thorsten Joachims. Query chains: Learning to rank from implicit
feedback. In Proc. 11th Intl. Conf. on Knowledge Discovery and Data Mining, pages
239–248, 2005.

14

Interactive Learning of a Dynamic Structure

Appendix A. Lower Bound Proofs

In this section, we prove Theorems 10 and 12. Both proofs are based on the lower bound
of Theorem 13 for the noisy classic binary search problem with a uniform target.

A.1. A Lower Bound on Noisy Standard Binary Search

In the classic binary search problem, the algorithm has to find a target t ∈ {1, . . . ,m}
using binary comparisons. Formally, we define the noisy standard binary search problem as
follows. A target t is chosen uniformly at random from the set {1, . . . ,m}, and the learner’s
goal is to identify t. In each round r, the learner queries an element qr. If qr = t, the
process ends. Otherwise, the response is a single bit, stating whether qr > t or not. The
response is noisy, meaning that the bit is correct with probability 1− p, and incorrect with
the remaining probability.

We now prove a theorem which we utilize later to prove Theorems 10 and 12.

Theorem 13 Every (possibly randomized) algorithm for the noisy standard binary search
problem requires at least logm

1−H(p) − o(logm) queries in expectation.

Proof Because the input and responses are not adversarial, but drawn from a known
distribution, there is a deterministic optimal algorithm, so it suffices to prove the theorem
for deterministic algorithms.

Let A′ be a deterministic algorithm for the noisy standard binary search problem, and
assume that it finds the target in at most Q− 1 rounds in expectation. (Q may depend on
p and m, but the dependencies are omitted to simplify the notation.) We first show that at
a small additional cost, we can assume that the algorithm never uses too many queries.

Lemma 14 If there is a deterministic algorithm A′ that uses at most Q − 1 rounds in
expectation, then there is a deterministic algorithm A that finds the target in at most Q
rounds in expectation and never uses more than (Q+ 1)m queries.

Proof The algorithm A consists of running A′ for no more than Qm rounds. If the target
has not been found yet, then A′ is terminated, and A queries all the elements in {1, . . . ,m}
sequentially.

This algorithm never uses more than Qm + m queries. Moreover, the probability that
A′ is terminated is, by Markov’s inequality, no more than 1

m . Thus, the query complexity
of A is bounded by Q− 1 + 1

m ·m = Q.

In order to prove Theorem 13, we show that for every fixed ε > 0, if m is large enough,
then A requires at least 1−ε

1−H(p) logm queries in expectation. Throughout this proof, p is a

fixed constant. Moreover, we assume that m is a (large enough) fixed constant and (without
loss of generality) a power of 2. We later discuss how large m should be (as a function of
ε).

We reduce the standard noisy binary search problem to a coding problem. Let T1 and
T2 be two positive integers, depending on m and p, which we will specify later. Consider
the following random procedure R which generates a sequence of length T1 + T2: The first
T1 elements of the sequence are drawn independently and uniformly at random from the

15

Interactive Learning of a Dynamic Structure

set {1, . . . ,m}. The final T2 elements of the sequence are drawn i.i.d. from {0, 1}; each of
them is 1 with probability p. The entropy of the sequence generated from this procedure is
T1 · logm+ T2 ·H(p), implying Lemma 15.

Lemma 15 Every algorithm that constructs a binary encoding of the string generated from
the random procedure R has to use at least T1 logm+ T2H(p) bits, in expectation.

We show that using a deterministic algorithm A for standard noisy binary search, we
can construct a good binary encoding algorithm B for sequences generated by R. By
Lemma 14, we can assume w.l.o.g. thatA finds the target in at most Q rounds in expectation
and never uses more than (Q + 1)m queries. The construction works as follows: Let s =
〈t1, . . . , tT1 , b1, . . . , bT2〉 be a sequence generated from the random procedure R, i.e., the ti
for 1 ≤ i ≤ T1 are drawn independently uniformly at random from the set {1, . . . ,m}, and
each bi for 1 ≤ i ≤ T2 is 1 independently with probability p and 0 otherwise.

For every 1 ≤ i ≤ T1, the algorithm B simulates the algorithm A, assuming that the
target is ti. The ith simulation of A is as follows. In each round, if A queries ti, B terminates;
otherwise, it uses a fresh bit among b1, . . . , bT2 sequentially to determine whether to feed an
incorrect or correct response to A. Notice that the algorithm terminates if and when the
response to a query confirms that the queried node is the target ti. Up until that event, the
response to each query is either “left” or “ right.” Therefore, the responses can be encoded
into a binary string ci. By the assumption on A, E[|ci|] ≤ Q, and |ci| ≤ (Q + 1)m always.
Let c′i be a binary string encoding of the length of ci. Thus, |c′i| ≤ 1 + log |ci|. Define a
binary string c′′i of length |c′′i | = 2|c′i|, by adding a 1 after the last digit of c′i and adding a
0 after each of its other digits.

Finally, define the binary string ci as the concatenation of c′′i with ci. From any string
with prefix ci, one can first extract c′′i , by finding the first digit ‘1’ in an even position.
From this, one obtains c′i from the leading odd digits; after learning the length of ci, one can
uniquely reconstruct ci. In turn, from ci, one can uniquely recover the target ti because A
is deterministic. Moreover, having ci and ti, it is uniquely determined which responses were
noisy. Because E[|ci|] ≤ Q and log is a concave function, E[|c′′i |] ≤ 2(logQ+ 1) ≤ O(logQ).

Define c = c1 · · · cT1 as the binary string obtained by sequentially concatenating c1, . . . , cT1 .
Based on the previous paragraph, given c, one can recover every ti as well as the bits
b1, . . . , bL, where L = |c| =

∑
1≤i≤T1 |ci|. Notice that E[L] ≤ T1 ·Q and L ≤ T1 · (Q+ 1) ·m

always.
Let ε1, ε2 > 0 be real numbers, which we will let go to 0 later. Let T1 be large enough so

that Pr[L ≥ T1Q · (1 + ε1)] < ε2. The existence of T1 follows from Chebyshev’s Inequality
because E[|ci|] ≤ Q, and the variance of |ci| is bounded by its maximum, which is at most
(Q+ 1) ·m. Let T2 = T1 ·Q · (1 + ε1). By definition of T2, with probability at least 1− ε2,
the T2 random bits in the second part of the sequence s are sufficient for the T1 executions
of A. In this case, the binary string c, concatenated with the bits bL+1, . . . , bT2 which had
been left unused in the simulations of A, is sufficient to uniquely determine s. The length
of this binary string is

(T2 − L) +

T1∑
i=1

|ci| ≤ T2 +

T1∑
i=1

O(log |ci|).

16

Interactive Learning of a Dynamic Structure

With the remaining probability, i.e., with probability at most ε2, the T2 bits at the end
of s may not be sufficient for B’s T1 simulations of A In this case, B simply encodes s by
encoding each ti using logm bits, and appends the final T2 bits. In this case, the length
of the binary code is T1 logm + T2. The expected length of the code, denoted by Q′, is
upper-bounded as follows:

E[Q′] ≤ ε2 · (T1 logm+ T2) + (1− ε2) · (T1 ·O(logQ) + T2)

≤ T1 · (ε2 logm+O(logQ)) + T2

≤ T1 · (ε2 logm+O(logQ) +Q(1 + ε1)) .

Lemma 15 implies that

E[Q′] ≥ T1 logm+ T2 ·H(p) = T1 · (logm+Q ·H(p) · (1 + ε1)).

Combining both inequalities and canceling out the T1 factor,

logm+Q ·H(p) · (1 + ε1) ≤ ε2 logm+O(logQ) +Q · (1 + ε1).

Rearranging this inequality gives us that

1− ε2
1 + ε1

· 1

1−H(p)
· logm ≤ Q+O(logQ).

By letting ε1, ε2 → 0, we obtain the claimed lower bound on the expected number of
rounds Q for any algorithm to find a random target.

A.2. Proof of Theorem 10

We next show how to use Theorem 13 to prove Theorem 10, which we restate here for
convenience.

Theorem 10 For every pair of positive integers k and m, there exists an undirected,
connected and unweighted graph G on a set of n = km nodes such that under the Shift-
ing Target model, every (possibly randomized and/or computationally inefficient) algorithm
makes at least

min{R− o(R),
1

1−H(p)
·
(
k log n+ (B − 2k + 1) · log k

)
− o(log n)−B · o(log k)}

mistakes, in expectation.
Proof Let the graph G be a k ×m grid. Formally, V = {(i, j) | 1 ≤ i ≤ k, 1 ≤ j ≤ m}
is the set of n = k · m nodes. Two nodes (i, j) and (i′, j′) are connected if and only if
|i − i′| + |j − j′| = 1. Visualizing the grid, we call the first coordinate of a node its row
number and the second coordinate its column number.

For each row i, the adversary draws a column ji independently and uniformly at random.
Let t(i) = (i, ji) be the resulting node in row i. These k nodes t(1), . . . , t(k) are the targets.

The first stage consists of k phases, each lasting until the learner has identified the
target in a particular row. In phase i, the adversary lets t(i) be the target. Identifying t(i) is

17

Interactive Learning of a Dynamic Structure

tantamount to identifying ji, and therefore equivalent to the classic binary search problem
on m integers. Therefore, by Theorem 13, every learner must make at least logm

1−H(p)−o(logm)

mistakes in expectation until it identifies the target t(i) for the first time. As soon as the
learner does, phase i ends, and phase i + 1 begins. In total over the k phases, the learner
must thus make at least k·logm

1−H(p) − k · o(logm) mistakes in expectation.
The second stage consists of B − k − 1 phases. In each phase, the adversary picks one

of the k targets uniformly at random, independently of past choices. A phase ends when
the learning algorithm identifies the target correctly. Consider any one phase in the second
stage. Unless the learner queried the correct row, the adversary will always provide feedback
in the vertical direction, i.e., it identifies whether the target is above or below the queried
node. Then, the learner’s task in each phase is equivalent to identifying the target’s row,
and therefore to the classic binary search problem on a path of length k. By Theorem 13,
it takes the learner at least log k

1−H(p) − o(log k) rounds to identify the target in expectation.
The total number of mistakes across all B− k− 1 phases of the second stage is therefore at
least (B−k−1)·(log k)

1−H(p) −B · o(log k) in expectation.
Combining both stages, we obtain the claimed bound. Notice that if R is “small,” the

adversary may not have enough time to finish this strategy. However, the same strategy
results in R− o(R) mistakes in expectation, corresponding to the first term in min{. . .}.

A.3. Proof of Theorem 12

Next, we prove Theorem 12, also restated here for convenience.

Theorem 12 For every pair of positive integers ∆ and m, there exist undirected unweighted
graphs G and G′ over the same set of n = ∆·m nodes such that G is connected, the evolution
graph G′ is ∆-regular (with a self-loop for every node), and every (possibly randomized or
inefficient) algorithm under the Drifting Target model makes at least min{R−o(R), 1

1−H(p) ·(
log n+B · log ∆

)
− o(log n)−B · o(log ∆)} mistakes in expectation.

Proof Let G be the ∆ × m grid. Formally, V = {(i, j) | 1 ≤ i ≤ ∆, 1 ≤ j ≤ m} is
the set of n = ∆ ·m nodes. Two nodes (i, j) and (i′, j′) are connected in G if and only if
|i − i′| + |j − j′| = 1. The undirected graph G′ is defined on the same set of nodes: in G′,
two nodes (i, j) and (i′, j′) are connected if and only if j = j′, i.e., they are in the same
column. In other words, G′ is a disjoint (and disconnected) collection of complete graphs,
each comprising the nodes of one of the grid’s columns. Thus, each node of G′ has degree
∆, counting the self-loop.

The adversary’s strategy proceeds in B + 1 phases s = 1, . . . , B + 1. Each phase s has
a designated target ts which stays fixed for the duration of the phase.5 Phase s ends when
the learner queries a node in the same row as ts. Until then, the adversary only reveals
vertical information, i.e., it reveals an edge pointing up or down, depending on whether the
learner’s guess was below or above the target. The initial target t1 is a uniformly random
node in G. Whenever a new phase s + 1 starts, the target ts+1 is chosen as a uniformly
random node in the same column as ts (and thus also t1, . . . , ts−1). Because the learner had

5. Notice that we slightly change the meaning of the notation ts, which referred to the target for a given
round s throughout the body of the paper.

18

Interactive Learning of a Dynamic Structure

only learned the row of ts, when the row is changed to a new uniformly random one, the
target is again uniformly random as far as the learner is concerned.

By Theorem 13, each phase lasts for at least log ∆
1−H(p) − o(log ∆) rounds in expectation.

Once the adversary has exhausted the B moves, the target stays fixed. At this point, in
order to identify the target’s column (about which nothing has been revealed so far), the
learner still requires at least logm

1−H(p) − o(logm) queries in expectation. Hence, we obtain a

lower bound of (B + 1) · log ∆
1−H(p) + logm

1−H(p) − (B + 1) · o(log ∆)− o(logm). Substituting that

m = n/∆ now gives the claimed bound. As in the proof of Theorem 10, if R is “small,” the
adversary may not have enough time to finish this strategy. However, the same strategy
results in R− o(R) mistakes in expectation, corresponding to the first term in min{. . .}.

Appendix B. Proof of Theorem 11

In this section, we prove Theorem 11, restated here for convenience.

Theorem 11 Under the Drifting Target model, there is a polynomial-time deterministic

learning algorithm which makes at most 1
1−H(p) ·

(
log n+B · log ∆ +R ·H(B/R)

)
mistakes

in expectation.
Proof As in the proof of Theorem 7, we will prescribe specific choices of weights λ(a) for
sequences a; these weights facilitate efficient computation of the median node to query. As
before, let A = V R denote the set of all sequences of length R. Consider a uniformly random
walk on G′ with stalling probability 1− b (which will be determined below), starting from
a uniformly random vertex a1 ∈ V . That is, in each round r, with probability 1 − b, the
walk stays at ar+1 = ar; with the remaining probability, it moves to a uniformly random
neighbor of ar in G′. Without loss of generality, we assume that every node has a self-loop
in G′. For each sequence a ∈ A, define λ(a) to be the probability that a occurs as the result
of this random walk process.

Because λ(·) is a probability distribution,
∑

a∈A λ(a) = 1. And because the ground

truth sequence a∗ moves at most B times, it has initial weight λ(a∗) ≥ 1
n · (

b
∆)B · (1−b)R−B.

Setting b = B
R , we apply Theorem 5, which gives a mistake bound of at most −1

1−H(p) · log
(

1
n ·

(b∆)B · (1− b)R−B
)

, which is exactly the claimed bound.

It remains to show how to implement this algorithm to run efficiently. We again define
“likelihoods” Lr(u) — this time for individual nodes u — and show how to inductively
compute them. For the base case, because the first node is chosen uniformly at random,
L1(u) = 1

n for every node u. Let qr and zr denote the prediction of the algorithm and the
response in round r, respectively. Consider a node u.

• If u is consistent with the response, i.e., u ∈ SG(qr, zr), then the weight of every
sequence a which predicts u in round r (i.e., ar = u) is multiplied by (1 − p); as a
result, so is the likelihood of u.

• Similarly, if u is inconsistent with the response, i.e., u /∈ SG(qr, zr), then the weight
of every sequence a which predicts u in round r is multiplied by p, and so is the
likelihood of u.

19

Interactive Learning of a Dynamic Structure

Similar to the proof of Theorem 7, we define intermediate variables

L′r(u) = Lr(u) ·
(

(1− p) · 1[u ∈ S(qr, zr)] + p · 1[u /∈ S(qr, zr)]
)
.

Because the weights of sequences correspond to the random walk with stalling probability
1 − b, the new likelihoods are Lr+1(u) = (1 − b) · L′r(u) +

∑
v∈S

b
|Nout

G′ (v)| · L
′
r(v). Notice

that the algorithm only needs to keep track of one variable per node and per round, and
the computations are straightforward linear combinations. Hence, we obtain an efficient
implementation.

20

	Introduction
	Our Contribution
	Related Work

	Preliminaries, Definitions, and Models
	The Basic Interactive Learning Framework
	The Learning Model for Dynamic Structures
	The Shifting Target Model
	The Drifting Target Model

	Noise

	A Generic Mistake Bound
	Results for the Shifting Target Model
	Results for the Drifting Target Model
	Conclusions and Future Work
	Lower Bound Proofs
	A Lower Bound on Noisy Standard Binary Search
	Proof of Theorem 10
	Proof of Theorem 12

	Proof of Theorem 11

