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Abstract—We consider an InterDependent Security (IDS)
game with networked agents where each agent chooses an
effort/investment level for securing itself. The agents are inter-
dependent in that the state of security of one agent depends not
only on its own effort but also on that of the other agents, and
each agent can benefit from other agents’ security investment
and effort. Since the agents are interdependent, they try to take
advantage of others’ security investment and effort and choose
to under-invest, which leads to an inefficient Nash equilibrium
(NE). While this has been analyzed extensively in the literature,
in this study we take a different angle. Specifically, we consider
the possibility of allowing agents to pool their resources, i.e., to
both invest in themselves as well as in other agents. We show
that the interaction of strategic and selfish agents under resource
pooling (RP) improves the agents’ effort level as well as their
utility as compared to a scenario without resource pooling. We
show that the social welfare (total utility) at the NE of the game
with resource pooling is higher than the maximum social welfare
attainable in a game without resource pooling but using an
optimal incentive mechanism. Furthermore, we show that while
voluntary participation in this latter scenario is not generally
true, it is guaranteed under resource pooling.

I. INTRODUCTION

The increasing rate and scale of cyber crime is placing
significant pressure on organizations to improve their security
posture. At the same time, the interdependent nature of cyber
risks means one’s state of security is not just the result of
one’s own security practices and investments, but of others’
connected to it, e.g., through attack propagation and supply
chain relationships. Decision making in such a scenario has
often been modeled as an interdependent security (IDS) game.
IDS games have been used to study security management in
computer networks [2], cloud computing [3], and Internet of
Things (IoT) networks [4]. The most critical issue that arises
in IDS games is free-riding where an entity under-invests in
security and takes advantage of others’ efforts. As a result,
a Nash equilibrium (NE) in IDS games is inefficient and
individuals’ investment in security is below the optimum [5].

There have been a number of studies in the literature of
IDS games to address the under-investment issue. In order
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to improve the agents’ levels of investment and reduce free-
riding, various incentive mechanisms have been proposed.
Grossklags et al. [6] show that bonus and penalty based on
agents’ security outcome can improve network security. Khalili
et al. [7] show that cyber insurance can be used as an incentive
mechanism in IDS games, and in the presence of a quantitative
security assessment (pre-screening), it is able to improve the
security investment and address free-riding issue.

Ioannidis et al. in [8] show that a well-informed steward
(e.g., a policy maker) can address the under-investment issue in
IDS games through mandate. Naghizadeh et al. in [9] analyze
the Pivotal (VCG) and Externality mechanisms (both are in
the form of a taxation/subsidy mechanism) to induce socially
optimal outcome in IDS games.

All of the above proposed mechanisms have to be im-
plemented by a central entity (e.g., a social planner, policy
maker, an insurer, etc.). In this study, we shall take a different
approach to inducing a socially optimal outcome in this type
of IDS games. Specifically, we consider the absence of such
a central entity, and instead propose resource pooling (RP) as
a solution to the under-investment issue in IDS games. We
model resource pooling by allowing agents to have the ability
to both invest in themselves as well as in other agents, so that
they can choose to not only improve its own but also others’
state of security. This modeling choice leads to a different
IDS game, referred to as the RP-augmented IDS game, or
simply RP-IDS game. In practice, exerting efforts on other
agents’ behalf has context dependent interpretations, such as
providing product/service discounts to customers by a service
provider, as well as funding open source development. This
somewhat idealistic model is then extended to a more realistic,
community-based RP-IDS game where agents pool resources
within a defined community/subset of agents.

Note that both IDS game and RP-IDS are non-cooperative
games where agents selfishly choose their action to maximize
their own utility. Thus our model is different from existing
literature on cooperative games [10] where the players form
coalitions and choose an action to maximize the utility of the
coalition that they belong to. A cooperative game is able to
improve network security as compared to a non-cooperative
scenario if the cost of forming coalition is sufficiently low,
but forming coalition is not always possible due to cultural,
economical, or social reasons [11].

We study the IDS game with a weighted total effort and
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quadratic cost model under two scenarios: (i) no RP (the
original IDS game), where each agent exerts effort only to
improve his own security; and (ii) with RP (RP-IDS), where
selfish agents pool their resources. It is worth mentioning that
while we study the notion of resource pooling in the context
of IDS games, our model and results are applicable to a
broader range of problems analyzing dependent relationship
(e.g., network games [12]).

Our main findings are summarized as follows.
1) Both games have a unique NE. At the NE of the RP-IDS

game, every agent obtains higher utility as compared to
that under the NE of the IDS game.

2) The social welfare (measured by total utility) at the
NE of the RP-IDS game is higher than that under the
socially optimal outcome of the IDS game, induced by
mechanisms such as VCG and externality mechanisms
[9]. In other words, as a mechanism, RP outperforms
these tax-based mechanisms.

3) While the VCG and externality mechanisms cannot
guarantee voluntary participation while imposing budget
balance [9], we show that in the RP-IDS game no
agent will unilaterally opt out of resource pooling (while
continue to be part of the IDS game), thereby ensuring
voluntary participation.

4) We consider a community scenario where the agents
are able to pool their resources within the communities
that they belong to, and these communities need not
be disjoint. We show this community based resource
pooling is always able to incentivize agents to improve
their effort levels as compared to a scenario without
resource pooling.

A. Related Literature

1) Distributed Mechanism Design: Distributed mechanism
framework has been proposed to induce socially optimal
outcome in a distributed manner, i.e., message transmission
is performed locally, and mechanism/tax functions depend
on messages from neighboring agents [13]. Even though
distributed mechanisms are viable options to implement the
socially optimal outcome without a central planner, they still
cannot be used in IDS games because they are in the form
of taxation mechanism and not able to satisfy the notion of
voluntary participation [9].

2) IDS games: Outside the incentive context, IDS games
have been extensively studied in the literature [14], [15], [16],
[17], [18]. Ann Miura-Ko et al. [14] consider a linear influence
network and find a condition on the dependence matrix to
guarantee the existence and uniqueness of the NE. Hota and
Sundaram in [15] consider IDS games under behavioral prob-
ability weighting and show that security risk can be reduced
by such weighting strategies. Jiang et al. in [16] show that the
price of anarchy in an IDS game can increase with the network
size regardless of security technology improvement, while a
repeated security game can decrease the price of anarchy and
make the resulting NE more efficient. [17] shows that the
underinvestment issue similarly exists in a two-stage game
model. [18] examines the relationship between risk exposure

and agents’ degrees in the dependence graph. Finally, the effect
of network structure on the existence and uniqueness of an
NE has been studied in the more general context of network
games, of which IDS games are a special case, see e.g., [19],
[20].

In the remainder of the paper, we present the IDS game
model without RP, and the RP-IDS game model, and their
associated analysis, in Sec. II and III, respectively. A number
of discussions are given in Sec. VII. Sec. VIII concludes the
paper.

II. INTERDEPENDENT SECURITY GAME WITHOUT
RESOURCE POOLING (IDS)

Consider n agents on a directed, weighted graph denoted by
G = (V, E , X), where V = {1, 2, · · · , n} is the set of n agents,
E ⊆ {(i, j)|i, j ∈ V} the set of edges between them, and X =
[xij ]n×n the adjacency weight matrix of this graph, where
xij > 0, i 6= j, (i, j) ∈ E is the edge weight, xij = 0, (i, j) 6∈
E , and xii = 0, i ∈ V . An edge (i, j) ∈ E indicates that agent
i depends on agent j (or agent j influences i) with the degree
of dependence given by edge weight xij . Dependence need
not be symmetrical, i.e., xij 6= xji in general. Agent i exerts
effort ei ≥ 0 towards securing himself, incurring cost bi · e2

i

(bi > 0 a constant). Given effort profile eee = [e1, e2, · · · , en]T ,
agent i has utility

ui(ei, e−i) = −li + ai · ei + ei · (
n∑

j=1

xijej)− bi · e2
i , (1)

where e−i denotes all elements in eee excluding ei, −li a
nominal loss agent i suffers without any effort, ai · ei, ai ≥ 0,
the benefit it derives from effort ei, and ei ·xij · ej the benefit
it derives from other agents’ efforts. This last term indicates
a case of positive externality between agents i and j; see
e.g., [21] for IDS games with negative externalities. Second
and third terms together in Equation (1) imply that with zero
effort, agent i cannot benefit from other agents’ efforts, i.e., it
cannot solely rely on the others. This is a form of the quadratic
utility function widely used in the literature of network games
[19], [22] and IDS games [23], [4]; it provides a second-order
approximation to higher order concave utility functions while
preserving the properties of them [23]. Note that quadratic cost
function bi · e2

i implies that the effort cost grows faster than
the benefit derived from effort ei. If the effort cost does not
grow faster than the benefit, it is beneficial for the agents to
exert an unbounded effort. The quadratic cost function avoids
the model from being pathological. However, our analysis and
methodology remain valid for other cost functions as long as
the cost function grows faster than the benefit from the effort.

It is worth mentioning that “effort” is an abstraction and
captures the level of spending in enhancing one’s cybersecurity
posture in IDS games, but can model other application contexts
as well. It can be considered an investment in a service or
a product that benefits the service provider as well as other
businesses using this service/product. In the marketing context,
the effort can be an investment for attracting more costumers to
a specific product, which can increase the consumers of related
products. For instance, if Netflix attracts more customers, it is
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likely that we see an increase in the number of customers
who upgrade their Internet service for a better streaming
experience.

The interaction of agents induces a game, denoted as
G = {V, {ui(.)}i∈V , A = [0,+∞)n}, where A is the action
space. In the rest of the paper, we shall use the terms exerted
effort, actions and security investments interchangeably. For
convenience of notation, when comparing two games given
by the same V, E but different weight matrices X1 and X2,
we will denote the resulting games as G(X1) and G(X2),
respectively. Next we analyze the equilibrium of game G.

A. Equilibrium Analysis

Let Bri(e−i) denote the best response function of agent i.
Using the first order condition we have

Bri(e−i) = arg max
e≥0

ui(e, e−i) =
ai
2bi

+
1

2bi

n∑
j=1

xijej . (2)

We will primarily focus on pure strategy Nash equilibrium
(NE), and for simplicity of exposition for the rest of the paper
Nash equilibrium refers to a pure strategy NE. 1 An NE is
the fixed point of the best response mapping. Let ê̂êe denote
the agents’ effort at the NE of game G; then ê̂êe satisfies the
following equations:

2biêi −
n∑

j=1

xij êj = ai, ∀i ∈ V or (2 ·B −X) · ê̂êe = aaa, (3)

where B is a matrix with bi’s on its main diagonal and zeros
everywhere else, and aaa = [a1, a2, · · · , an]T .

We make the following assumption on cost bi to ensure that
the effort levels are bounded at the NE. More discussion on
this assumption is provided in Section VII-A.

Assumption 1: 2bi >
∑n

j=1 xij , ∀i ∈ V .
Assumption 1 states the technical requirement that the cost of
effort (bi) should be sufficiently large; otherwise, the utility
functions and the optimal effort levels may be unbounded.
A physical interpretation of this is that the agents gain more
by lowering their effort (as the cost of effort is high) and
relying on others. More on the importance of this assumption
is discussed in Section VII-A.

Under Assumption 1, we have the following lemma on the
best response mapping and the NE of game G.

Theorem 1: Under Assumption 1, matrix (2B − X) is
invertible and ê̂êe = (2 · B − X)−1 · aaa is the unique NE of
game G.

Proof. See Appendix. �
Note that Theorem 1 holds for any non-negative vector aaa,

which leads to the following corollary.
Corollary 1: Under Assumption 1, all entries of (2 · B −

X)−1 are non-negative. Furthermore, let X and X̃ be two
adjacency matrices over the same V and E . Consider the games
G(X) and G(X+X̃), and their respective NE ê̂êe and ẽ̃ẽe. If 2bi ≥∑n

j=1 [xij + x̃ij ], then ẽ̃ẽe � ê̂êe.2 In other words, agents exert

1There is no mixed strategy Nash equilibrium for the game G. We provide
a discussion on mixed strategies in the Appendix.

2ννν = [ν1 · · · νn]T � θθθ = [θ1 · · · θn]T means that νi ≥ θi, ∀i.

higher effort at the NE given a stronger degree of dependence
among agents.

Proof. See Appendix. �

B. Socially optimal outcome

We now consider the socially optimal effort levels for the
IDS game. Denote by eee∗ = [e∗1, e

∗
2, · · · , e∗n], the socially

optimal effort profile maximizes the total utility:

eee∗ ∈ arg max
eee∈A

n∑
i=1

ui(ei, e−i) . (4)

To ensure the existence of a socially optimal strategy, we make
the following assumption.

Assumption 2: 2bi >
∑n

j=1 [xij + xji] , ∀i ∈ V .
Similar to Assumption 1, Assumption 2 also implies that

the agents gain more by lowering their effort and relying on
others’ effort. More on this is discussed in Section VII-A.

Theorem 2: Let ê̂êe be the effort level at the NE of game G and
eee∗ be the socially optimal effort level. Then under Assumption
2 we have:

1) eee∗ = (2B −X −XT )−1 · aaa;
2) e∗i ≥ êi, ∀i.

That is, every agent exerts higher effort at the socially optimal
solution compared to the NE.

Proof. See Appendix. �
Remark: The above shows that the socially optimal effort

profile of game G(X), given by eee∗ = (2B −X −XT )−1 ·aaa,
also happens to be the NE of game G(X + XT ). Also note
that for game G(X), while the total utility under eee∗ is higher
than that under the NE ê̂êe, this may or may not be true for
an agent’s individual utility. In other words, we always have∑n

i=1 ui(eee
∗) ≥

∑n
i=1 ui(ê̂êe), but it is possible that ui(eee∗) <

ui(ê̂êe) for some i.
In the next section, we will examine the impact of intro-

ducing resource pooling as a mechanism to improve agents’
effort and social welfare.

III. INTERDEPENDENT SECURITY GAME WITH RESOURCE
POOLING (RP-IDS)

Consider the same IDS game setting. Let eeei =
[ei1, ei2, · · · , ein]

T be the action of agent i where eij ≥ 0
denotes the effort exerted by agent i on behalf of agent j.
Moreover, agent i incurs cost bj · e2

ij by exerting effort eij
on behalf of agent j. Let E = [eee1, eee2, · · · , eeen]T be an n× n
matrix that denotes the effort profile, and let Ei =

∑n
j=1 eji

denote the total effort exerted on behalf of agent i. Agent i’s
utility given profile E is:

vi(eeei, eee−i) = −li + ai(

n∑
j=1

eji)−
n∑

k=1

bk · e2ik

+ (

n∑
j=1

eji) ·

(
n∑

k=1

xik · (
n∑

r=1

erk)

)

= −li + aiEi + Ei ·
n∑

j=1

xijEj −
n∑

k=1

bk · e2ik.

Our resource pooling model implies that each agent can
exert effort on behalf of other agents and make an invest-
ment in others’ security to improve their security posture.
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Resource pooling can have different interpretations in other
contexts. For instance, in the marketing context, it can be
considered an investment in a joint product/service where
both providers/companies benefit if a customer purchases their
product.

The interaction of agents induces the RP-IDS game
Grp =

{
V, {vi}i∈V , Arp = [0,+∞)n

2
}

, where Arp is the
action space under resource pooling. By first order condition
the best response function of agent i satisfies the following:

eeei = Bri(eee−i)

eii =
ai
2bi

+

∑n
k=1 xik · Ek

2bi

eij =
xij · Ei

2bj
, ∀j 6= i (5)

Let Ê = [êij ]n×n be the NE of game Grp and Êi =
∑n

j=1 êji
the total effort exerted on behalf of agent i at the NE. We have
the following lemma on effort profile Ê.

Lemma 1: Assume that game Grp has at least one Nash
equilibrium. The effort profile Ê at the NE satisfies the
following system of equations,

(2B −X −XT ) ·
[
Ê1, · · · , Ên

]T
= aaa .

Proof. As Ê is the fixed point of the best response mapping,
we have,

êii =
ai
2bi

+

∑n
k=1 xik · Êk

2bi

êji =
xji · Êj

2bi
∀j 6= i =⇒

by adding above equations:

2bi · Êi = ai +
n∑

j=1

(xij + xji)Êj ∀i ∈ V

=⇒ aaa = (2B −X −XT ) ·
[
Ê1, · · · , Ên

]T
(6)

�
Theorem 3: Under Assumption 2, (2B − X − XT ) is

invertible and game Grp has a unique NE given as follows:[
Ê1, · · · , Ên

]T
= (2B −X −XT )−1 · aaa

êii =
ai
2bi

+

∑n
k=1 xik · Êk

2bi

êij =
xij · Êi

2bj
, ∀j 6= i (7)

Proof. Similar to the proof of Theorem 1, we can show that
if 2bi ≥

∑n
j=1 xij + xji,∀i, then all eigenvalues of matrix

(2B−X−XT ) are non-zero. Therefore, matrix (2B−X−XT )
is invertible. By Corollary 1, all entries of (2B−X−XT )−1

are non-negative and
[
Ê1 · · · Ên

]T
= (2B −X −XT )−1 · aaa

is a non-negative vector. Moreover, by best response mapping
provided in Equation (5), we know that êij can be calculated
by the following,

êii =
ai
2bi

+

∑n
k=1 xik · Êk

2bi
≥ 0

êij =
xij · Êi

2bj
≥ 0, ∀j 6= i (8)

Therefore, the fixed point of the best response mapping is
non-negative and unique, implying the NE of game Grp is
unique and can be found by Equation (7). �

Remark: It is worth pointing out that for the same
weight matrix X , the total effort exerted by each agent,
[Ê1, Ê2, · · · , Ên], at the NE of the RP-IDS game Grp is
the same as the socially optimal effort of the IDS game G.
That is, [

Ê1, · · · , Ên

]T
= (2B −X −XT )−1 · aaa
= eee∗ �︸︷︷︸

By Theorem 2

ê̂êe . (9)

In other words, the introduction of resource pooling incen-
tivizes agents to boost their effort to the socially optimal levels
for game G. Note that the game Grp has its own socially
optimal solution as we discuss in Section VII-B.

Next we show that every agent at the NE of game Grp

obtains a higher utility than that attained at the NE of game
G, i.e., resource pooling improves the utility for all agents.

Theorem 4: Let Ê = [êij ]n×n be the NE of Grp and ê̂êe be
the effort profile at the NE of game G. Under Assumption 2,
we have:

vi(Ê) ≥ ui(ê̂êe), ∀i ∈ V . (10)

Proof. Let ẽ̃ẽei be a vector with length n and all its elements
are zero except entry i which is equal to êi (effort level of
agent i at NE of game G). By definition of Nash equilibrium
we have,

vi(Ê) ≥ vi(ẽ̃ẽei, ê̂êe−i). (11)

As Êi ≥ êi, ∀i, by Equations (7) and (3) we have êii ≥ êi.
Moreover,

vi(ẽ̃ẽei, ê̂êe−i) = −li + ai · êi + ai

∑
k 6=i

êki − bi · (êi)2

+(êi +
∑
k 6=i

êki) ·
n∑

j=1

xij · (
∑
k 6=i

êkj)

 ≥
−li + ai · êi − bi · (êi)2 + êi ·

n∑
j=1

xij · êj = ui(êi, ê−i) (12)

By Equations (11) and (12), vi(Ê) ≥ ui(ê̂êe) ∀i ∈ V . �
The following theorem shows that social welfare at the NE

of game Grp is higher than the maximum social welfare of
game G, even though the total effort exerted by each agent is
the same under both as noted earlier.

Theorem 5: Let Ê be the effort profile at the NE of game
Grp and eee∗ be the socially optimal effort profile in game G.
Under Assumption 2 we have,

∑n
i=1 vi(Ê) ≥

∑n
i=1 ui(eee

∗) .
Proof.
n∑

i=1

vi(Ê) =
n∑

i=1

−li + aiÊi − bi ·

 n∑
j=1

ê
2
ji

 + Êi ·

 n∑
j=1

xij · Êj


By Equation (9), (e∗i )2 = Ê2

i = (
∑n

j=1 êji)
2 ≥

∑n
j=1(êji)

2,
and Êi = e∗i . Therefore,

n∑
i=1

vi(Ê) ≥
n∑

i=1

−li + aiÊi − bi · Ê2
i + Êi ·

 n∑
j=1

xij · Êj


=

n∑
i=1

ui(eee
∗
).
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�
We conclude this section by highlighting the role of resource

pooling in the IDS game.
• At the NE, with resource pooling (game Grp) agents

exert higher effort (for themselves and on others) and
experience higher utility than without (game G); e.g.,
Êi ≥ êi, and vi(Ê) ≥ ui(ê̂êe).

• Resource pooling induces agents to exert socially optimal
levels of effort (under game G), while improving the
social welfare as it allows more judicious spreading of
efforts; e.g., Ê = eee∗ and

∑n
i=1 vi(Ê) ≥

∑n
i=1 ui(eee

∗).

IV. BEST RESPONSE DYNAMICS FOR THE IDS GAME
(GAME G) AND THE RP-IDS GAME (GAME Grp)

Based on Theorem 1 and 3, we have to calculate an inverse
of a matrix to find the Nash equilibrium of game G and Grp.
In this section, we develop an iterative best response dynamics
which converges to the Nash equilibrium without calculating
the matrix inversion.

A. Best Response Dynamics for IDS game (Game G)

Best response dynamics are well-known algorithms to find
a Nash equilibrium iteratively. In each iteration of the best
response dynamics, the action of each agent is updated based
on the best response function [24]. Algorithm 1 shows the best
response dynamics of game G. In the theorem below, we use
results from [25] to show that Algorithm 1 converges to the
NE of game G.

Theorem 6: Under assumption 1, Algorithm 1 converges to
ê̂êe, the Nash equilibrium of game G.

Proof. It is easy to check that under Assumption
1, the best response mapping of game G, Br(eee) =

[Br1(eee−1), · · · , Brn(eee−n)]T = B−1

2 · (aaa + X · eee), is a
contraction mapping. By [25], the best response dynamics
shown in Algorithm 1 converges to the NE. �

Algorithm 1 Finding Nash equilibrium for game G using best
response dynamics
Input: Game parameters (aaa,X,bbb), Number of iterations (T ).
Initialization: set e(0)

k = maxi
ai

2bi−
∑n

j=1 xij
, ∀ k ∈ V

for t= 1,2,· · · , T do
e

(t)
i = ai

2bi
+ 1

2bi

∑n
j=1 xije

(t−1)
j ,∀ i ∈ V

end
Output: [e

(T )
1 , e

(T )
2 , · · · , e(T )

n ]

It is easy to see that Algorithm 1 has n · (n+ 1) multipli-
cations and n2 additions in each iteration. Since the for loop
runs T times, the complexity of Algorithm 1 is O(T × n2).

B. Modified Best Response Dynamics for RP-IDS game (Grp)

Best response dynamics for Game Grp can be computation-
ally expensive because it updates each agent’s action using the
best response function given by a system of linear equations
defined in Equation (5). The lower bound on the complexity
of solving a linear system is O(n2) [26]. Since we have to

solve a linear system for each agent, we need at least O(n3)
computations in each iteration of the best response dynamics.

In order to avoid solving a system of linear equations
for each agent in every iteration, we propose a modified
best response dynamics which updates the total effort exerted
on behalf of each agent iteratively instead of updating the
action profile. Algorithm 2 shows the modified best response
dynamics for game Grp.

Theorem 7: Under Assumption 2, the output of Algorithm
2 is the effort profile of the agents at the NE of game Grp.
Moreover, the computational complexity of Algorithm 2 is
O(T × n2), where T is the number of iterations.

Proof. Based on Theorem 6, we know that E(t)
i , t =

0, 1, · · · , defined in Algorithm 2, converges to the effort
of agent i at the Nash equilibrium of game G(X + XT ).
Moreover, we know that the total effort exerted on behalf of
agent i at the NE of game Grp is equal to the effort of agent i
at the NE of game G(X +XT ). Therefore, E(t)

i , t = 0, 1, · · ·
converges to the total effort exerted on behalf of agent i at the
NE of game Grp. By Theorem 3, the output of Algorithm 2
is the equilibrium of game Grp.

It is easy to see that Algorithm 2 has n2 multiplications,
2n2 additions, and n divisions in each iteration. After the for
loop, there are n2 additions, 2n2 − n multiplications, and n2

divisions. Since we have T iterations, the total computational
complexity is O(T × n2). �

Algorithm 2 Finding Nash equilibrium for game Grp using
the modified best response dynamics
Input: Game parameters (aaa,X,bbb), Number of iterations (T ).
Initialization: set E(0)

k = maxi
ai

2bi−
∑n

j=1 xij+xji
, ∀ k ∈ V

for t= 1,2,· · · , T do

E
(t)
i =

ai+
∑n

j=1(xij+xji)E
(t−1)
j

2bi
,∀ i ∈ V

end

êkk =
ak+

∑n
j=1 xkj ·E(T )

j

2bk
,∀k ∈ V

êkk′ =
xkk′ ·E

T
k

2b′k
, ∀k 6= k′

Output: Ê = [êij ]n×n

V. VOLUNTARY PARTICIPATION IN RP

As investment in security is a non-excludable public good,
an agent can benefit even if it chooses not to participate in
an incentive mechanism. As a result, designing a mechanism
which incentivizes the agents to voluntarily participate and
exert socially optimal effort levels is not straightforward. In
[9], it was shown that taxation mechanisms (i.e., penaliz-
ing/rewarding agents based on agents’ effort level) are not able
to implement the socially optimal solution while guaranteeing
both weak budget balance and voluntary participation. For this
reason, it is important to check whether agents will voluntarily
participate in resource pooling. In what follows, we first define
this notion and then show that under resource pooling the
voluntary participation property is satisfied.

Definition 1 (Voluntary Participation (VP)): Consider game
Gk

rp where agent k opts out of RP and only invests in himself
and nobody else invest in agent k (ekj = ejk = 0, ∀j 6= k),
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while other agents participate in RP. Let E̊ = [̊eij ]n×n be the
NE of game Gk

rp and vi(E̊) be the utility of agent i at the NE.
We say that resource pooling has the voluntary participation
property with respect to agent k, if

vk(E̊) ≤ vk(Ê), (13)

where Ê is the effort profile at the NE of game Grp.3 If the
above is true for all k ∈ V , then we say that resource pooling
has the voluntary participation property.

The following theorem suggests that resource pooling al-
ways satisfies the VP property.

Theorem 8: If Assumption 2 holds, then agent i achieves
higher utility at the NE of game Grp, than his utility at the NE
of game Gi

rp for all i ∈ V . That is, resource pooling always
satisfies the VP property.
Proof. See Appendix. �

As no one has incentive to deviate from resource pooling
unilaterally, resource pooling is a better way to improve social
welfare as compared to taxation mechanisms which are not
able to satisfy the voluntary participation and budget balance
constraint simultaneously [9].

It is worth noting that resource pooling is able to satisfy a
stronger notion of voluntary participation defined as follows.

Definition 2 (Stronger Notion of Voluntary Participation
(SVP)): Consider game G

k

rp where agent k opts out of RP
and only invests in himself (ekj = 0, ∀j 6= k), while the
other agents participate in RP and may choose to invest in
agent k. In other words, while agent k chooses not to exert
any effort on behalf of other agents, he may receive resources
from other agents in game G

k

rp if it is in the other agents’
self interest to do so. Let É = [éij ]n×n be the NE of game
G

k

rp and vi(É) be the utility of agent i at the NE. We say
that resource pooling has the strong voluntary participation
property with respect to agent k, if

vk(É) ≤ vk(Ê), (14)

where Ê is the effort profile at the NE of game Grp. If the
above is true for all k ∈ V , then we say that resource pooling
has the strong voluntary participation property.

It is worth noting a crucial difference between the definition
of an NE and the VP property. An NE in game Grp implies
that vk(ê̂êek, ê̂êe−k) ≥ vk(eeek, ê̂êe−k), ∀eeek ∈ Rn. In words, this
definition says that at the NE, agent k cannot improve his
utility by changing his action while other agents do not change
their effort and keep the same action. On the other hand,
Equations (13) and (14) imply that agent k is not able to
improve his utility if he chooses not to pool his resources
and the other agents best respond to his decision and choose
their actions accordingly. The following theorem shows that
resource pooling is able to satisfy the SVP property defined
in Definition 2.

Theorem 9: If Assumption 2 holds, resource pooling always
satisfies the SVP property defined in Definition 2.
Proof. See Appendix. �

3Under Assumption 2, both Grp and Gk
rp have an NE.

VI. COMMUNITY BASED RESOURCE POOLING

So far we have assumed that each agent can pool his
resources with all other agents in the network. This is a
useful benchmark but not a very realistic scenario. We next
consider a more realistic setting where each agent is able to
pool resources within a defined community. The notion of
community-based resource pooling captures situations such
as co-branding partnerships, where two or more separate
brands work together to provide services and products for their
collective customers. Prime examples of such partnerships
include that among Starbucks, Spotify, and Uber [27], between
Amazon and American Express (Amex) [28], and between
Apple and MasterCard [29]. In all these examples, one can
think of the effort as the amount of marketing investment to
capture more customers. Co-branding allows one company to
capture customers for another. The interdependent nature also
arises from their mutual reliance on customer reach and market
share: co-branding would mean the more riders Uber has, the
more orders Starbucks will receive through Uber Eats app,
and in the case of Amazon/Amex, the more customers Amazon
has, the more will be likely to obtain/use an Amex card due to
the cash-back benefits Amex offers its customers on Amazon
purchases. Thus it is in Amex’s interest to promote Amazon
to its own customers. The opposite is also true. The more
customers Amex has, the more will purchase from Amazon
because of the cash-back, etc.

More formally, we assume that agents form m communi-
ties (not necessarily disjoint) and they are allowed to pool
their resources within the communities they belong to. Let
C1, · · · , Cm denote the m communities, where ∪mk=1Ck =
V . Let I(i) be the set of indices of the communities that
agent i belongs to, i.e., i ∈

⋂
j∈I(i) Cj . Let Gc

rp denote
the game induced by the interaction of the agents who are
allowed to pool their resource within their communities. Let
eeei = [eij ], j ∈

⋃
k∈I(i) Ck, be the action of agent i. Let

Ei =
∑

j∈
⋃

k∈I(i) Ck

eji be the total effort exerted on behalf of

agent i in game Gc
rp. The utility of agent i is given by:

vi(eeei, eee−i) = −li + aiEi + Ei

n∑
j=1

xijEj −
∑

j∈
⋃

k∈I(i) Ck

bje
2
ij .

Let ě̌ěei = [ěij ], j ∈
(⋃

k∈I(i) Ck

)
be the effort profile of agent

i at the NE of game Gc
rp and Ěi =

∑
j∈CI(i)

ěji. We have the
following result.

Theorem 10: Under Assumption 2, game Gc
rp has a unique

Nash equilibrium and the effort profile of agents at the
equilibrium is given by:[

Ě1, · · · , Ěn

]T
= (2B −X −XT

c )−1aaa,

ěii =
ai
2bi

+

∑n
j=1 xijĚj

2bi
,

ěij =
xij · Ěi

2bj
,∀j 6= i, j ∈

⋃
k∈I(i)

Ck ,(15)

where the entry (i, j) of matrix Xc is equal to xij if j ∈⋃
k∈I(i) Ck, and zero otherwise.
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Proof. See Appendix. �
Thus both games G and Gc

rp have a unique Nash equilib-
rium under Assumption 2. The next theorem compares the NE
of games G and Gc

rp.
Theorem 11: Under Assumption 2, we have the following

results.
• Community based resource pooling improves the effort

and utility of each agent as compared to those at the NE
of game G. That is,

Ěi ≥ êi, ∀i,
vi(ě̌ěei, ě̌ěe−i) ≥ ui(êi, ê−i),∀i.

• Ěi ≤ e∗i ,∀i. That is, the total effort exerted on behalf of
each agent is less than the socially optimal effort level in
game G.

Proof. See Appendix. �
The next theorem identifies the impact of merging two

communities on agents’ utilities and social welfare.
Theorem 12: Consider game G

c

rp a community based
resource pooling game with the following communities:
C1, C2, · · · , Cm−2, Cm−1 ∪ Cm.

Let ě̌ěei be the strategy of agent i at the NE of game G
c

rp.
Moreover, let I(i) be the indices of the communities that
agent i belongs to in game G

c

rp. We have, Ěi ≥ Ěi,∀i, and
vi(̌ěěei, ě̌ěe−i) ≥ vi(ě̌ěei, ě̌ěe−i),∀i, where, Ěi =

∑
j∈

⋃
k∈I(i) Ck

ěji.

In other words, merging two communities improves agents’
utilities as well as agents’ efforts.
Proof. See Appendix. �

While the social welfare at the NE of game Gc
rp is higher

than that at the NE of game G, it may or may not be higher
than the maximum social welfare of game G. Next we provide
a numerical example to highlight the impact of community
based resource pooling. Consider a network with n = 10
agents and the following parameters:

ai = 1,∀i, bi = 2,∀i

xij =


1 if j = i+ 1 and i is odd.
1 if j = i− 1 and i is even.
0 if i = j
0.1 o.w.

Without loss of generality, we will set li = 0, ∀i; as li is
a constant, this will not affect agents’ decision. Given this
set of parameters, we divide the agents to m,m = 1, · · · , 10
communities using spectral clustering method [30] as follows.

m = 1, C1 = V
m = 2, C1 = {1, 2, 3, 4, 9, 10}, C2 = {5, 6, 7, 8}
m = 3, C1 = {1, 2, 3, 4, 7, 8}, C2 = {5, 6, 7, 8},

C3 = {9, 10}
m = 4, C1 = {1, 2}, C2 = {3, 4}, C3 = {5, 6, 9, 10},

C4 = {7, 8}
m = 5, C1 = {1, 2}, C2 = {3, 4}, C3 = {5, 6},

C4 = {7, 8}, C5 = {9, 10}
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Figure 1: The total utility at the NE of game Gc
rp with m communities.

Resource pooling within fewer and large size communities is more effective
in improving social welfare.

m = 6, C1 = {1}, C2 = {2}, C3 = {3, 4}, C4 = {5, 6},
C5 = {7, 8}, C6 = {9, 10}

m = 7, C1 = {1, 2}, C2 = {3}, C3 = {4},
C4 = {5, 6}, C5 = {7, 8}, C6 = {9}, C7 = {10}

m = 8, C1 = {1}, C2 = {2}, C3 = {3}, C4 = {4}
C5 = {5, 6}, C6 = {7}, C7 = {8}, C8 = {9, 10}

m = 9, C1 = {1}, C2 = {2}, C3 = {3}, C4 = {4},
C5 = {5, 6}, C6 = {7}, C7 = {8}, C8 = {9},
C9 = {10}

m = 10, Ck = {k}, ∀k

It is easy to see that m = 1 corresponds to the case without
community as studied earlier in the paper, whereas m = 10
corresponds to the case where resource pooling is not allowed.

Figure 1 illustrates the total utility at the NE using commu-
nity based resource pooling as the number of communities
m increases. These results verifies our theoretical finding
that resource pooling even limited within communities always
leads to higher total utility. Furthermore, we see that when
m ≥ 6, the total utility at the NE of game Gc

rp falls below the
maximum social welfare in game G, suggesting that resource
pooling is more effective with fewer and larger communities
(m ≤ 5). Figure 2 illustrates the total effort at the NE of Gc

rp

as a function of the number of communities (m). First, we
note that the total effort at the socially optimal outcome of
game G is the same as the total effort at game Grp (m = 1),
as expected. Also, consistent with the previous figure, we see
that the total investment decreases as a function of the number
of communities m.

VII. DISCUSSION

A. On the assumption 2bi >
∑n

j=1 xij

Throughout the analysis we have used variants of the above
assumptions on the existence and uniqueness of the following:
• NE in game G: 2bi >

∑n
j=1 xij ,∀i;

• Socially optimal strategy profile in game G: 2bi >∑n
j=1 xij + xji,∀i;

• NE profile in game Grp: 2bi >
∑n

j=1 xij + xji,∀i.
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Figure 2: The total effort at the NE of game Gc
rp with m communities.

Resource pooling within fewer and large size communities is more effective
in incetivizing agents to invest more in security.

The reason behind these assumptions is to prevent the model
from becoming pathological: if the cost of effort is sufficiently
low, then there may not exist NE or socially optimal strategy,
and it may be beneficial for the agents to exert very high effort
with unbounded utility.

Example 1: Consider a network with xii = 0, xij =
1

n−1 ∀i, j ∈ V, i 6= j and bi = 1. Under these parameters
Assumption 2 does not hold. Moreover, set ei = r, ∀i ∈ V .
We have:

∑n
i=1 ui(eee) =

∑n
i=1(−li + (r)ai − bi · r2 +

r2
∑n

j=1 xij) = −
∑n

i=1 li + r ·
∑n

i=1 ai , which is a linear
function in r and is unbounded. In this case the socially
optimal effort does not exist.

B. On the socially optimal outcome of game Grp

While the NE of the RP-IDS game Grp achieves socially
optimal levels of effort defined for the IDS game G, the
introduction of resource pooling means that each agent now
has a bigger action space, thereby giving rise to a different
social optimum for this new game. We next show how this
new optimum can be computed.

Let E∗ = [e∗ij ]n×n be the socially optimal effort profile for
the RP-IDS game:

E
∗

= arg max
E∈Rn×n

+

n∑
i=1

vi(E)

= arg max
E∈Rn×n

+

n∑
i=1

−li + aiEi − bi(

n∑
j=1

e
2
ji) + Ei

n∑
j=1

xijEj

 .

The assumption below ensures the existence of a solution.
Assumption 3: 2bi > n ·

∑n
j=1(xij + xji), ∀i ∈ V

Under Assumption 3, it is easy to check that g(E) =∑n
i=1 vi(E) is strictly concave in E. By the first order

condition, E∗ satisfies the following:

∂g(E)

∂eki
|E=E∗ = ai − 2bie

∗
ki +

n∑
j=1

(xij + xji) · E∗j = 0 ∀k,

=⇒ n · ai − 2biE
∗
i + n ·

n∑
j=1

(xij + xji) · E∗j = 0, ∀i ∈ V,

=⇒ (2B − n · (X +XT )) ·
[
E∗1 , · · · , E∗n

]T
= n · aaa . (16)

Again we can show (2B − n · (X +XT )) is invertible under
Assumption 3. Thus the optimal outcome E∗ is given by:[
E∗1 , · · · , E∗n

]T
= n · (2B − n · (X +XT ))−1 · aaa

e∗ki =
ai
2bi

+

∑n
j=1(xij + xji) · E∗j

2bi
, ∀k, i ∈ V

By Corollary 1, we have E∗i � Êi, ∀i, i.e., the total effort
exerted on behalf of agent i improves under the social optimum
compared to that under the NE of game Grp. As before, not
all agents may attain higher individual utility under E∗ as
compared to their utility under NE effort profile Ê.

VIII. CONCLUSION

We considered an IDS game with positive externality, and
introduced a resource pooling augmented IDS game, the RP-
IDS game to examine the effect of using resource pooling as
a mechanism to incentivize higher effort levels by interdepen-
dent agents. We showed that (1) resource pooling increases
the total effort exerted on behalf of each agent as compere to
no resource pooling, (2) each agent experiences higher utility
under resource pooling as compared to no resource pooling,
(3) social welfare at the NE of the RP-IDS game is higher
than the optimal social welfare under the IDS game, and (4)
agents voluntarily participate in resource pooling.

One limitation of our model is the fixed community struc-
ture, where agents are not able to change the communities that
they belong to. A very relevant and interesting extension of
the current work is to study community based resource pooling
when agents voluntarily participate in communities.

IX. APPENDIX

A. Proofs

Proof. [Theorem 1] Let ννν be the eigenvector of matrix
2B −X and λ its corresponding eigenvalue. Without loss of
generality, we can assume that νi is the maximum element of
ννν in absolute value (|νi| ≥ |νj |,∀j). Note that |νi| > 0 by
definition. The following shows that eigenvalues of 2B − X
are non-zero and 2B −X is invertible:

(2B −X) · ννν = λ · ννν =⇒ |λ · νi| = |2bi · νi −
n∑

j=1

xijνj |

≥ |2bi · νi| − |
n∑

j=1

xijνi ≥ 2bi · |νi| −
n∑

j=1

xij |νj ||

≥ (2bi −
n∑

j=1

xij)︸ ︷︷ ︸
>0

|νi| > 0 =⇒ |λ| > 0

Let e be a constant such that e > maxi
ai

2bi−
∑n

j=1 xij
.

Consider game G′ =
{
V, {ui}i∈V , A = [0, e]n

}
. Note that A

(the action space of game G′) is convex and compact and
utility ui(ei, e−i) is concave in ei. Therefore, by Brouwer
fixed-point theorem, the best response mapping of game G′
has at least one fixed point (Nash equilibrium). Let ê̂êe′ be the
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Nash equilibrium of game G′, and ê′i be the maximum element
in ê̂êe′. By Equation (2), we know that ê′j 6= 0, ∀j. We have,

d ui(eee)

d ei
|eee=ê̂êe′ ≥ 0 (equality holds if ê′i < e)

ai − 2biê
′
i +

n∑
j=1

xij ê
′
j ≥ 0 =⇒

(2bi −
n∑

j=1

xij) · ê′i ≤ ai =⇒ ê′i ≤
ai

2bi −
∑n

j=1 xij
< e.

Therefore, ê′i < e which implies that ê̂êe′ is an interior point of
set A and it should be an NE for game G as well. Therefore,
game G has at least one Nash equilibrium. By Equation (3), the
fixed point of best response mapping of game G(X) satisfies
the following, (2B −X) · ê̂êe = aaa. As (2B −X) is invertible,
the best response mapping has a unique fixed point ê̂êe = (2B−
X)−1 · aaa. As game G(X) has at least one Nash equilibrium,
and fixed point (2B −X)−1 · aaa is the only candidate for NE,
(2B−X)−1 ·aaa should be a non-negative vector and a unique
NE for G(X). �

Proof. [Corollary 1] Let 000 ∈ Rn be a zero vector. By
Theorem 1, we know that (2 · B − X)−1 · ã̃ãa � 000 for any
non-negative vector ã̃ãa. Set ãi = 1 and ãj = 0, ∀j 6= i and
ã̃ãa = [ã1, · · · , ãn]T . Then, (2 · B − X)−1 · ã̃ãa � 000 is the ith
column of (2 ·B −X)−1. Because i is arbitrary, all columns
of (2 ·B −X)−1 are non-negative. Moreover, we have,

(2B −X) · ê̂êe = aaa

(2B −X − X̃) · ẽ̃ẽe = aaa =⇒
ẽ̃ẽe = (2B −X)−1 · aaa + (2B −X)−1 · X̃ · ẽ̃ẽe

= ê̂êe+ (2B −X)−1 · X̃ · ẽ̃ẽe︸ ︷︷ ︸
�000

� ê̂êe

�
Proof. [Theorem 2] Define f(eee) as follows:

f(eee) =

n∑
i=1

ui(eee) =

n∑
i=1

(−li + ai · ei − bie2
i + ei ·

n∑
j=1

xijej)

First, notice that the Hessian of f(.) is H = −2B+X+XT ,
and H is a symmetric matrix with real eigenvalues. Similar to
the proof of Theorem 1, we can show that if 2bi ≥

∑n
j=1 xij+

xji, ∀i, then all eigenvalues of H are negative implying that
f(.) is strictly concave and H is invertible. Therefore, we can
use the first order condition to find eee∗:

5f(eee∗) = aaa− (2B −X −XT ) · eee∗ = 0 =⇒
eee∗ = (2B −X −XT )−1 · aaa . (17)

Note that eee∗ = (2B − X − XT )−1 · aaa is the NE of game
G(X +XT ), which implies that (2B −X −XT )−1 · aaa � 0.
The result then follows from Corollary 1. �

Proof. [Theorem 8] Consider game G1
rp. In this game e1j =

ej1 = 0 for all j ∈ V − {1}. Let E̊ = [̊eij ]n×n be the NE
of G1

rp with e̊1j = e̊j1 = 0, ∀j ∈ V − {1}. Moreover, let
E̊i =

∑n
j=1 e̊ji. By the first order condition, best response of

agent 1 is given by,

2b1e̊11 −
n∑

j=1

x1jE̊j = a1 (18)

Moreover, by best response function of agent i > 1, we have,

2bie̊ii −
n∑

j=1

xijE̊j = ai, 2bj e̊ij − xijE̊i = 0, j 6= i (19)

Similar to Equation (6) and by Equations (18) and (19),[
E̊1, · · · , E̊n

]T
satisfies: (2B−XT

[1]−X) ·
[
E̊1, · · · , E̊n

]T
=

aaa, where all elements of X[1] are equal to X except its first
row and column which are zero vectors. Similar to Theorem
3, if 2bi >

∑n
j=1 [xij + xji] , ∀i, then game G1

rp has a unique
Nash equilibrium, and we have,[

E̊1, · · · , E̊n

]T
= (2B −XT

[1] −X)−1aaa

e̊11 =
a1

2b1
+

∑n
k=1 x1k · E̊k

2b1

e̊ii =
ai
2bi

+

∑n
k=1 xik · E̊k

2bi
∀i > 1

e̊ji =
xji · E̊j

2bi
∀j 6= i, i > 1, j > 1 (20)

By Corollary 1 and Equations (20) and (7), it is easy to see
that E̊i ≤ Êi and e̊ij ≤ êij , ∀i, j.

v1(E̊) = −l1 + a1e̊11 − b1(̊e11)2 + (̊e11)
n∑

j=1

x1jE̊j

≤ −l1 + a1(̊e11 +

n∑
j=2

êj1)− b1e̊2
11

+(ê11 +
n∑

j=2

êj1)
n∑

j=1

x1j(
∑
k 6=1

êkj)


≤︸︷︷︸

by definiton of NE for Grp

−l1 + a1(ê11 +
n∑

j=2

êj1)−
n∑

j=1

bj ê
2
1j

+(ê11 +
n∑

j=2

êj1)
n∑

j=1

x1jÊj = vi(Ê) (21)

Therefore, resource pooling satisfies voluntary participation
wrt agent 1. We can show this holds wrt any agent. �

Proof. [Theorem 9] The proof is similar to the proof of
Theorem 8. Consider game G

1

rp. We have,[
É1, · · · , Én

]T
= (2B −XT

[r1] −X)−1aaa

é11 =
a1

2b1
+

∑n
k=1 x1k · Ék

2b1

éii =
ai
2bi

+

∑n
k=1 xik · Ék

2bi
∀i > 1

éji =
xji · Éj

2bi
∀j 6= i, j > 1 (22)

where all the elements of X[r1] are equal to X except
its first row which is a zero vector. By Corollary 1 and
Equations (22) and (7), it is easy to see that Éi ≤ Êi and
éij ≤ êij , ∀i, j. With the similar procedure as Equation (21),
we can conclude that the resource pooling satisfies the strong
voluntary participation defined in Definition 2 with respect
to agent 1. Similarly, resource pooling satisfies the strong
voluntary participation with respect to all agents. �
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Proof. [Theorem 10] Proof is similar to the proof of Theo-
rem 3. We use the first order condition to find the best response
functions.

∂vi(eeei, eee−i)

∂eii
= 0 =⇒

ěii =
ai
2bi

+

∑n
k=1 xik · Ěk

2bi
∀i

∂vj(eeej , eee−j)

∂eji
= 0 =⇒

ěji =
xji · Ěj

2bi
∀j 6= i, j ∈

⋃
k∈I(i)

Ck (23)

By adding above equations:

2bi · Ěi = ai +
n∑

j=1

xijĚj +
∑

j∈
⋃

k∈I(i) Ck

xjiĚj ∀i ∈ V

=⇒ aaa = (2B −X −XT
c ) ·

[
Ě1, · · · , Ěn

]T
(24)

Under assumption 2, (2B −X −XT
c ) is invertible. We have,

(2B −X −XT
c )−1 · aaa =

[
Ě1, · · · , Ěn

]T
(25)

Moreover, by best response mapping we have,

ěii =
ai
2bi

+

∑n
j=1 xijĚj

2bi
,

ěij =
xij · Ěi

2bj
,∀j 6= i, j ∈

⋃
k∈I(i)

Ck (26)

Therefore, the bast response mapping has a unique fixed
point implying uniqueness of NE. �

Proof. [Theorem 11]

eee∗ = (2B −X −XT )−1 · aaa
ê̂êe = (2B −X)−1 · aaa[

Ě1, · · · , Ěn

]T
= (2B −X −XT

c )−1 · aaa
(2B −X) � (2B −X −XT

c )

� (2B −X −XT )

Corollary 1 =⇒ eee∗ �
[
Ě1, · · · , Ěn

]T � ê̂êe (27)

Next we show that vi(ě̌ěei, ě̌ěe−i) ≥ ui(êi, ê−i). Let ẽ̃ẽei be a vector
with length |

⋃
k∈I(i) Ck| and all its elements are zero except

eii which is equal to êi (effort level of agent i at NE of game
G). By definition of NE, we have,

vi(ě̌ěei, ě̌ěe−i) ≥ vi(ẽ̃ẽei, ě̌ěe−i). (28)

As Ěi ≥ êi, ∀i, by Equations (26) and (3) we have ěii ≥ êi.
Moreover,

vi(ẽ̃ẽei, ě̌ěe−i) = −li + ai · êi + ai

∑
k 6=i,k∈

⋃
r∈I(i) Cr

ěki − bi · (êi)2

+(êi +
∑

k 6=i,k∈CI(i)

ěki) ·
n∑

j=1

xij · (
∑

k 6=i,k∈
⋃

r∈I(i) Cr

ěkj)

 ≥
−li + ai · êi − bi · (êi)2 + êi ·

n∑
j=1

xij · êj = ui(êi, ê−i) (29)

By Equations (28) and (29), vi(Ê) ≥ ui(ê̂êe) ∀i ∈ V . �
Proof. [Theorem 12] Next we show Ěi ≥ Ěi. Note that[
Ě1, · · · , Ěn

]T
= (2B−X−XT

c )−1 ·aaa and
[
Ě1, · · · , Ěn

]
=

(2B−X−XT

c )−1 ·aaa, where, entry (i, j) of Xc is equal to xij
if agent i and j belong to the same community after merging
community Cm and Cm−1. Otherwise, it is zero. We have,

(2B −X −XT
c ) � (2B −X −XT

c )

Corollary 1 =⇒
[
Ě1, · · · , Ěn

]T
�

[
Ě1, · · · , Ěn

]
(30)

As Ěi ≥ Ěi, ∀i, by Equation (26), we have ěij ≥ ěij , ∀i, j.

vi(ě̌ěei, ě̌ěe−i) = −li + ai · ěii + ai

∑
k 6=i,k∈C

I(i)

ěki −
n∑

j=1

bj · (ěij)
2

+(ěii +
∑

k 6=i,k∈
⋃
r∈I(i) Cr

ěki) ·
n∑

j=1

xij · (ěij +
∑

k 6=i,k∈
⋃
r∈I(i) Cr

ěkj)

 ≥
−li + ai · Ěi −

n∑
j=1

bj · (ěij)
2

+ Ěi ·
n∑

j=1

xij · Ěj = vi(ě̌ěei, ě̌ěe−i)

Moreover, by the definition of Nash equilibrium for
game G

c

rp, we have vi(̌ěěei, ě̌ěe−i) ≥ vi(ě̌ěei, ě̌ěe−i). Therefore,
vi(̌ěěei, ě̌ěe−i) ≥ vi(ě̌ěei, ě̌ěe−i). �

B. On the mixed strategies Nash equilibrium in game G

We can show that there is no mixed strategies Nash equi-
librium in game G. Assume that the action of agent i follows
a probability distribution with mean value µi and variance σ2

i .
We have,

E{ui(eee)} = E{aiei − bi · e2
i + ei

n∑
j=1

xijej} (31)

= ai · µi − bi · (µ2
i + σ2

i ) + µi · E{
n∑

j=1

xijei} (32)

As we can see in Equation (32), agent i always is able to
improve its utility by setting σi = 0. Therefore, a mixed
strategy cannot be an optimal action at the NE. Therefore,
the NE is always pure.

C. On the voluntary participation and budget balance con-
straints for taxation mechanisms

Neghizadeh and Liu [9] consider a model with a strictly
concave utility function and show that the taxation mecha-
nisms may not be able to satisfy the voluntary participation
and budget balance constraints simultaneously. In this part, we
provide an example to show that their result can be extended
to the quadratic utility model. Consider an example with the
following parameters,

n = 30, xij = 1 ∀i, j, i 6= j, bi = 30, ai = 1, li = 0 ∀i.

In this example, the social welfare at the socially optimal
outcome of game G is given by,

eee∗ = (2B −X −XT )−1 · aaa = [0.5 . . . 0.5]T ,

ui(eee
∗) = 0.25 ∀i,

n∑
i=1

ui(eee
∗) = 7.5. (33)

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 08,2021 at 20:57:51 UTC from IEEE Xplore.  Restrictions apply. 



2325-5870 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2020.3042710, IEEE
Transactions on Control of Network Systems

11

By the notion of exit equilibrium defined in [9], the agents’
effort when agent i unilaterally opts out of the taxation
mechanism is given by,

ê
(i)
i = arg max

ei≥0
ui(ei, ê

(i)
−i),

ê
(i)
−i = arg max

e−i�0

∑
j 6=i

uj(ê
(i)
i , e−i), (34)

where, ê(i)
i is the effort of agent i, and ê

(i)
−i is a (n − 1)-

dimensional vector denoting effort of the agents excluding
agent i at the exit equilibrium. Using the first order condition,
the solution to Equation (34) satisfies the following system of
linear equations,

ai − 2biê
(i)
i +

n∑
k=1

xikê
(i)
k = 0,

aj − 2bj ê
(i)
j +

n∑
k=1

xjkê
(i)
k +

∑
k 6=i

xkj ê
(i)
k = 0 ∀j 6= i,

or equivalently, (2B − X − XT
[i]) · ê̂êe

(i) = aaa, where ê̂êe(i) =

[ê
(i)
1 , . . . , ê

(i)
n ]T , and entry (r, s) of X[i] is equal to xrs if r 6= i

and s 6= i. Otherwise, it is zero.
In our example, the utility of agent i when he is the

outlier, and the other agents are participating in the taxation
mechanism is given by,

ê̂êe(i) = (2B −X −XT
[i])
−1 · aaa,

ê
(i)
i = 0.1564, ê

(i)
j = 0.2891 ∀j 6= i,

ui(ê̂êe
(i)) = 0.7338, uj(ê̂êe

(i)) = 0.1672.

By symmetry, it is easy to see that ui(ê̂êe(i)) = 0.7338,∀i.
By [9], if

∑n
i=1 ui(eee

∗) −
∑n

i=1 ui(ê̂êe
(i)) < 0, then there

is not any taxation mechanism which induces the socially
optimal outcome and satisfies both week budget balance and
voluntary participation constraints. In our example, we have∑n

i=1 ui(eee
∗) −

∑n
i=1 ui(ê̂êe

(i)) = −14.5143 < 0 which shows
the result in [9] can be extended to the quadratic utility model.

While taxation mechanisms cannot induce socially optimal
outcome and address the free-riding issue in our model,
resource pooling is able to do that.
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