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Abstract

Network games provide a natural machinery to compactly
represent strategic interactions among agents whose payoffs
exhibit sparsity in their dependence on the actions of oth-
ers. Besides encoding interaction sparsity, however, real net-
works often exhibit a multi-scale structure, in which agents
can be grouped into communities, those communities fur-
ther grouped, and so on, and where interactions among such
groups may also exhibit sparsity. We present a general model
of multi-scale network games that encodes such multi-level
structure. We then develop several algorithmic approaches
that leverage this multi-scale structure, and derive sufficient
conditions for convergence of these to a Nash equilibrium.
Our numerical experiments demonstrate that the proposed ap-
proaches enable orders of magnitude improvements in scala-
bility when computing Nash equilibria in such games. For ex-
ample, we can solve previously intractable instances involv-
ing up to 1 million agents in under 15 minutes.

1 Introduction

Strategic interactions among interconnected agents are com-
monly modeled using the network, or graphical, game for-
malism (Kearns, Littman, and Singh, 2001; Jackson and
Zenou, 2015). In such games, the utility of an agent depends
on his own actions as well as those by its network neigh-
bors. Many variations of games on networks have been con-
sidered, with applications including the provision of public
goods (Allouch, 2015; Buckley and Croson, 2006; Khalili,
Zhang, and Liu, 2019; Yu et al., 2020), security (Hota and
Sundaram, 2018; La, 2016; Vorobeychik and Letchford,
2015), and financial markets (Acemoglu et al., 2012).
While network games are a powerful modeling frame-
work, they fail to capture a common feature of human or-
ganization: groups and communities. Indeed, investigation
of communities, or close-knit groups, in social networks is
a major research thread in network science. Moreover, such
groups often have a hierarchical structure (Clauset, Moor,
and Newman, 2008; Girvan and Newman, 2002). For ex-
ample, strategic interactions among organizations in a mar-
ketplace often boil down to interactions among their con-
stituent business units, which are, in turn, comprised of in-
dividual decision makers. In the end, it is those lowest-
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Figure 1: An illustration of a multi-scale (3-level) network.

level agents who ultimately accrue the consequences of
these interactions (for example, corporate profits would ul-
timately benefit individual shareholders). Moreover, while
there are clear interdependencies among organizations, in-
dividual utilities are determined by a combination of indi-
vidual actions of some agents, together with aggregate deci-
sions by the groups (e.g., business units, organizations). For
example, an employee’s bonus is determined in part by their
performance in relation to their co-workers, and in part by
how well their employer (organization) performs against its
competitors in the marketplace.

We propose a novel multi-scale game model that gener-
alizes network games to capture such hierarchical organi-
zation of individuals into groups. Figure 1 offers a stylized
example in which three groups (e.g., organizations) are com-
prised of 2-3 subgroups each (e.g., business units), which
are in turn comprised of 2-5 individual agents. Specifically,
our model includes an explicit hierarchical network struc-
ture that organizes agents into groups across a series of lev-
els. Further, each group is associated with an action which
deterministically aggregates the decisions by its constituent
agents. The game is grounded at the lowest level, where the
agents are associated with scalar actions and utility func-
tions that have modular structure in the strategies taken at
each level of the game. For example, in Figure 1, the utility
function of an individual member a; of level-3 group agg) is
a function of the strategies of (i) a;’s immediate neighbors



(represented by links between pairs of filled-in circles), (ii)
a;’s level-2 group and its network neighbor (the small hol-

low circles), and (iii) a;’s level-3 group, aég) (large hollow

circle) and its network neighbors, a(l?’) and aé?’).

Our next contribution is a series of iterative algorithms
for computing pure strategy Nash equilibria that explicitly
leverage the proposed multi-scale game representation. The
first of these simply takes advantage of the compact game
representation in computing equilibria. The second algo-
rithm we propose offers a further innovation through an it-
erative procedure that alternates between game levels, treat-
ing groups themselves as pseudo-agents in the process. We
present sufficient conditions for the convergence of this al-
gorithm to a pure strategy Nash equilibrium through a con-
nection to Structured Variational Inequalities (He, Yang, and
Wang, 2000), although the result is limited to games with
two levels. To address the latter limitation, we design a third
iterative algorithm that now converges even in games with
an arbitrary number of levels.

Our final contribution is an experimental evaluation of the
proposed algorithms compared to best response dynamics.
In particular, we demonstrate orders of magnitude improve-
ments in scalability, enabling us to solve games that cannot
be solved using a conventional network game representation.

Related Work: Network games have been an active area of
research; see e.g., surveys by Jackson and Zenou (2015) and
Bramoullé and Kranton (2016). We now review the most rel-
evant papers. Conditions for the existence, uniqueness and
stability of Nash equilibria in network games under general
best responses are studied in (Parise and Ozdaglar, 2019;
Naghizadeh and Liu, 2017; Scutari et al., 2014; Bramoullé,
Kranton, and D’amours, 2014). Variational inequalities (VI)
are used in these works to analyze the fixed point and con-
traction properties of the best response mappings. It is iden-
tified in Parise and Ozdaglar (2019); Naghizadeh and Liu
(2017); Scutari et al. (2014) that when the Jacobian matrix
of the best response mapping is a P-matrix or is positive
definite, a feasible unique Nash equilibrium exists and can
be obtained by best-response dynamics (Scutari et al., 2014;
Parise and Ozdaglar, 2019). In this paper, we extended the
analysis of equilibrium and best responses for a conventional
network game to that in a multi-scale network game, where
the utility functions are decomposed into separable utility
components to which best responses are applied separately.
This is similar to the generalization from a conventional VI
problem to an SVI problem (He, Yang, and Wang, 2000;
He, 2009; He and Yuan, 2012; Bnouhachem, Benazza, and
Khalfaoui, 2013) problem.

Previous works on network games that involve group
or community structure focus on finding such structures;
e.g., community detection in networks using game theoretic
methods have been studied in (Mcsweeney, Mehrotra, and
Oh, 2017; Newman, 2004; Alvari, Hajibagheri, and Suk-
thankar, 2014). By contrast, our work focuses on analyzing a
network game with a given group/community structure, and
using the structure as an analytical tool for the analysis of
equilibrium and best responses.

2 Preliminaries

A general normal-form game is defined by a set of agents
(players) I = {1,..., N}, with each agent a; having an ac-
tion/strategy space K; and a utility function u;(z;,2_;) that
¢ aims to maximize; z; € K; and x_; denotes the actions by
all agents other than ¢. We term the collection of strategies
of all agents z a strategy profile. We assume K; C Ris a
compact set.

We focus on computing a Nash equilibrium (NE) of a
normal-form game, which is a strategy profile with each
agent maximizing their utility given the strategies of others.
Formally, * is a Nash equilibrium if for each agent 1,

x} € argmax w;(z;, ;). (1)
z,€K;

A network game encodes structure in the utility functions
such that they only depend on the actions by network neigh-
bors. Formally, a network game is defined over a weighted
graph (I, E), with each node an agent and F is the set of
edges; the agent’s utility u;(x;,z_;) reduces to u;(x;,xy,),
where I; is the set of network neighbors of i, although we
will frequently use the former for simplicity.

An agent’s best response is its best strategy given the ac-
tions taken by all the other agents. Formally, the best re-
sponse is a set defined by

BR;(x_;,u;) = argmax w;(x;, £_;). 2)
Zq
Whenever we deal with games that have a unique best re-
sponse, we will use the singleton best response set to also
refer to the player’s best response strategy (the unique mem-
ber of this set).

Clearly, a NE of a game is a fixed point of this best
response correspondence. Consequently, one way to com-
pute a NE of a game is through best response dynamics
(BRD), which is a process whereby agents iteratively and
asynchronously (that is, one agent at a time) take the others’
actions as fixed values and play a best response to them.

We are going to use this BRD algorithm as a major build-
ing block below. One important tool that is useful for ana-
lyzing BRD convergence is Variational Inequalities (VI). To
establish the connection between NE and VI we assume the
utility functions u;,Vi = 1,..., N, are continuously twice

differentiable. Let K = Hf\il K; and define F' : RN — RN

as follows:
N

F(x):= < - leuz(x)> ) 3)
i=1
Then z* is said to be a solution to VI(K, F') if and only if
(x—2")'F(z*) >0,V € K . 4)

In other words, the solution set to VI(K, F') is equivalent to
the set of NE of the game. Now, we can define the condition
that will guarantee the convergence of BRD.

Definition 1. The Py condition: The T matrix generated
from F : RN — RN is given as follows

Oll(F%? —51,21gF) —51,1\/(?)
T(F) = —,32,:1( ) Ol2f ) —52,:1\/( ) 7
—Bna(F) —Bya(F) an(F)



a;(F) = infaex [|ViFill2, Bi;j(F) = supgeg ||V, Fil2,
i # 4. If Y(F) is a P-matrix, that is, if all of its principal
components have a positive determinant, then we say F' sat-
isfies the Py condition.

Theorem 1. (Scutari et al., 2014) If F' satisfies the Py con-
dition, then F' is strongly monotone on K, and VI(K, F') has
a unique solution. Moreover, BRD converges to the unique
NE from an arbitrary initial state.

3 A Multi-Scale Game Model

Consider a conventional network (graphical) game with the
set I of N agents situated on a network G = (I, E), each
with a utility function u;(x;, x, ), with I; the set of i’s neigh-
bors, I the full set of agents/nodes and E the set of edges
connecting them.! Suppose that this network G exhibits the
following structure and feature of the strategic dependence
among agents: agents can be partitioned into a collection of
groups {Sy}, where k is a group index, and an agent a; in
the kth group (i.e., a; € Si) has a utility function that de-
pends (i) on the strategies of its network neighbors in S,
and (ii) only on the aggregate strategies of groups other
than k (see, e.g., Fig. 1). Further, these groups may go on to
form larger groups, whose aggregate strategies impact each
other’s agents, giving rise to a multi-scale structure of the
network. This kind of structure is very natural in a myriad
of situations. For example, members of criminal organiza-
tions take stock of individual behavior by members of their
own organization, but their interactions with other organiza-
tions (criminal or otherwise) are perceived in group terms
(e.g., how much another group has harmed theirs). A similar
multi-level interaction structure exists in national or ethnic
conflicts, organizational competition in a market place, and
politics. Indeed, a persistent finding in network science is
that networks exhibit a multi-scale interaction structure (i.e.,
communities, and hierarchies of communities) (Girvan and
Newman, 2002; Clauset, Moor, and Newman, 2008).

We present a general model to capture such multi-scale
structure. Formally, an L-level structure is given by a hier-
archical graph structure {G()} for each level [, 1 <1 < L,

where GO = ({8}, EW) represents the level- struc-

ture. The first component, {Slgl)}k prescribes a partition,
where agents in level [ — 1 form disjoint groups given by
this partition; each group is viewed as an agent in level [,
denoted as a,(cl). Notationally, while both ag) and S,(cl) bear
the superscript (1), the former refers to a level-l agent, while
the latter is the group (of level-(I — 1) agents) that the for-
mer represents. The set of level-/ agents is denoted by I()
and their total number NV, The second component, F (l), is
a set of edges that connect level-l agents, encoding the de-
pendence relationship among the groups they represent. This
structure is anchored in level 1 (the lowest level), where sets
S ,il) are singletons, corresponding to agents aj in the game,
who constitute the set 1.

To illustrate, the multi-scale structure shown in Fig. 1 is

'The edges are generally weighted, resulting in a weighted ad-
jacency matrix on which the utility depends.

given by GV = G = ({SV}, = I,ED = E), as well
as how level-1 agents are grouped into level-2 agents, how
level-2 agents are further grouped into level-3 agents, and
the edges connecting these groups at each level.

It should be obvious that the above multi-scale represen-
tation of a graphical game is a generalization of a conven-
tional graphical game, as any such game essentially corre-
sponds to a L = 1 multi-scale representation. On the other
hand, not all conventional graphical games have a meaning-
ful L > 1 multi-scale representation (with non-singleton
groups of level-1 agents); this is because our assumption that
an agent’s utility only depends on the aggregate decisions
by groups other than the one they belong to implies certain
properties of the dependence structure. For the remainder of
this paper we will proceed with a given multi-scale structure
defined above, while in Appendix G we outline a set of con-
ditions on a graphical game G that allows us to represent it
in a (non-trivial) multi-scale fashion.

Since the resulting multi-scale network is strictly hierar-

chical, we can define a direct supervisor of agent al(-l)

level-l to be the agent a,(fﬂ) corresponding to the level-

(I + 1) group k that the former belongs to. Similarly, two
agents who belong in the same level-l group k are (level-l)
group mates. Finally, note that any level-1 agent a; belongs
to exactly one group in each level . We index a level-/ group
to which a; belongs by k;;.

In order to capture the agent dependence on aggregate ac-
tions, we define an aggregation function a](cl) for each level-/
group k that maps individual actions of group members to
R (a group strategy). Specifically, consider a level-l group

in

S,(Cl) with level-(I — 1) agents in this group playing a strategy
profile z ;). The (scalar) group strategy, which is also the
k

strategy for the corresponding level-(I 4+ 1) agent, is deter-
mined by the aggregation function,

(l) —U;(@)( S}gl))- &)

A natural example of this is linear (e.g., agents respond
to total levels of violence by other criminal organizations):
O'(l)(:l: (z)) = Z ) x(l).
k S, i€s,’ i

The L-level structure above is captured strategically by
introducing structure into the utility functions of agents. Let
Iy, denote the set of neighbors of level-/ group k to which
level-1 agent a; belongs; i.e., this is the set of level-I groups
that interact with agent a;’s group. This level-1 agent’s util-
ity function can be decomposed as follows:

i(wi,3 ) Zu”)( .y ) (6)

In this definition, the level-l strategies ccg) are implicitly

functions of the level-1 strategies of agents that comprise the
group, per a recursive application of Eqn. (5). Consequently,
the utility is an additive function of the hierarchy of group-
level components for increasingly (with /) abstract group of
agents. Note that conventional network games are a special
case with only a single level (L = 1).



To illustrate, if we consider just two levels (a collection
of individuals and groups to which they directly belong), the
utility function of each agent a; is a sum of two components:

1 1 1 2 2 2
wtroa) = (2ot ) i (o2, )

In the first component, xgz = x;, since level-1 groups cor-

§1) is the strategy
ki1

profile of i’s neighbors belonging to the same group as 1,
given by E(1). The second utility component now depends
only on the aggregate strategy x,(fi of the group to which
i belongs, as well as the aggregate strategies of the groups

with which i’s group interacts, given by E().

respond to individual agents, whereas

4 Algorithms and Analysis

Consider the BRD algorithm (formalized in Algorithm 1)
in which we iteratively select an agent who plays a best re-
sponse to the strategy of the rest from the previous iteration.

ALGORITHM 1: BRD Algorithm

Initialize the game, t = 0, z;(0) = (0):,¢ = 1,--- , N;
while not converged do
fori=1:N do
‘ Ii(t + 1) = BRi(a:,i(t), ’u,»;)
end
t<—t+1
end

The conventional BRD algorithm operates on the “flat-
tened” utility function which evaluates utilities explicitly as
functions of the strategies played by all agents a; € I. Our
goal henceforth is to develop algorithms that take advantage
of the special multi-scale structure and enable significantly
better scalability than standard BRD, while preserving the
convergence properties of BRD.

4.1 Taking Advantage of Multi-Scale Utility
Representation

The simplest way to take advantage of the multi-scale rep-
resentation is to directly leverage the structure of the util-
ity function in computing best responses. Specifically, the
multi-scale utility function is more compact than one that
explicitly accounts for the strategies of all neighbors of ¢
(which includes all of the players in groups other than the
one ¢ belongs to). This typically results in a direct compu-
tational benefit to computing a best response. For example,
in a game with a linear best response, this can result in an
exponential reduction in the number of linear operations.
The resulting algorithm, Multi-Scale Best-Response Dy-
namics (MS-BRD), which takes advantage of our utility rep-
resentation is formalized as Algorithm 2. The main differ-
ence from BRD is that it explicitly uses the multi-scale util-
ity representation: in each iteration, it updates the aggregated
strategies at all levels for the groups to which the most re-
cent best-responding agent belongs. Since MS-BRD simply

ALGORITHM 2: Multi-Scale BRD (MS-BRD)

Initialize the game, t = 0, 1:1(.1)(0) = (x0)i,t=1,...,N
for /[ =2:L do
for k= 1:N) do
l 1
| 20 =0 @0 (0);
end

end
while not converged do
for i = 1:N (Level-1) do
| e+ 1) = BRi(@) (1), u:)
end
for /= 2:Ldo
for k= 1:N¥ do
[ a4 1) = oo (k4 1)
end
end
t+—t+1;

end

performs operations identical to BRD but efficiently, its con-
vergence is guaranteed under the same conditions (see The-
orem 1). Next, we present iterative algorithms for computing
NE that take further advantage of the multi-scale structure,
and study their convergence.

4.2 Taking Advantage of Multi-Scale Strategic
Dependence Structure

In order to take full advantage of the multi-scale game struc-
ture, we now aim to develop algorithms that treat groups
explicitly as agents, with the idea that iterative interactions
among these can significantly speed up convergence. Of
course, in our model groups are not actual agents in the
game: utility functions are only defined for agents in level
1. However, note that we already have well-defined group
strategies — these are just the aggregations of agent strategies
at the level immediately below, per the aggregation func-
tion (5). Moreover, we have natural utilities for groups as
well: we can use the corresponding group-level component
of the utility of any agent in the group (note that these are
identical for all group members in Eqn. (6)). However, using
these as group utilities will in fact not work: since ultimately
the game is only among the agents in level 1, equilibria of
all of the games at more abstract levels must be consistent
with equilibrium strategies in level 1. On the other hand,
we need to enforce consistency only between neighboring
levels, since that fully captures the across-level interdepen-
dence induced by the aggregation function. Therefore, we
define the following pseudo-utility functions for agents at
levels other than 1, with agent & in level [ corresponding to
a subset of agents from level [ — 1:

~ (1 l l l [,i-1 l l
) = o (alaf? ) = 1 (oo ) )

(o g ). 0)



The first term is the level-l component of the utility of any
level-1 agent in group k. The second and third terms model
the inter-level inconsistency loss that penalizes a level-l
agent a,(cl), where L,(CUH) and Lgl’lfl) penalize its incon-

sistency with the level-(I + 1) and level-(I — 1) entities re-

(L,1+1)
k

spectively. In general, L is a different function from

L,&Hl’l); we elaborate on this further below.

The central idea behind the second algorithm we propose
is simple: in addition to iterating best response steps at level
1, we now interleave them with best response steps taken by
agents at higher levels, which we can since strategies and
utilities of these pseudo-agents are well defined. This algo-
rithm is similar to the augmented Lagrangian method in op-
timization theory, where penalty terms are added to relax an
equality constraint and turn the problem into one with sep-
arable operators. We can decompose this type of problem
into smaller subproblems and solve the subproblems sequen-
tially using the alternating direction method (ADM) (Yuan
and Li, 2011; Bnouhachem, Benazza, and Khalfaoui, 2013).
The games at adjacent levels are coupled through the equal-
ity constraints on their action profiles given by Eqn (5), and
the penalty functions are updated before starting a new iter-
ation. The full algorithm, which we call Separated Hierar-
chical BRD (SH-BRD), is provided in Algorithm (3).

The penalty updating rule in iteration ¢ of Algorithm (3)
is:

1. Forl=2,...,Li=1,...,N®

Ll(l7l71) (zz(‘l)’gz(l)(msw(t + 1)))
2
=nl {zgﬂ — o @guw(t+1) + Aﬁ”(t)} . ®)

 NO, where oV €

i

2.Forl =1,....L —1;¢ = 1,...
S]gl—&—l)

LD (UIEZH)("’S;”U% xgﬂ)(t))

2
_ h](€l+1) {U;E}H)(msgw) 3 xl(cl+1)(t) 3 /\](€l+1)(t):| .
©)]
3. Forl=2,...,L,i=1,...,N®

=2\Y(t) —n{" {afl)(.’bsgu (t+1)) — 2"t + 1)} .
(10)
When updating, all other variables are treated as fixed, and
A0(0), hgl) > 0 are chosen arbitrarily.

Unlike MS-BRD, the convergence of the SH-BRD al-
gorithm is non-trivial. To prove it, we exploit a connection
between this algorithm and Structured Variational Inequali-
ties (SVI) with separable operators (He, 2009; He and Yuan,
2012; Bnouhachem, Benazza, and Khalfaoui, 2013). To for-

mally state the convergence result, we need to make several
explicit assumptions.

ALGORITHM 3: Separated Hierarchical BRD (SH-BRD)
Initialize the game, t = 0, :cgl)(O) = (x0)ii=1,...,N©
for /= 2:Ldo
for k= 1:NV do

21 (0) = 0} (@40 (0));

end

end

while not converged do

for /= 1:Ldo

fori=1:NU (1 to | — 1 Penalty Update, if| > 1) do
‘ Update LEl’lfl)

end

fori=1:NW (I 101+ 1 Penalty Update, if| < L) do
‘ Update LS’Z‘H), where az(-l) € S,(JH)

end

fori=1:NW (Best Response) do

+"(t+1) = BR; (ai”(ws_m (t+1)),

1 1+1 N¢
20 (1), 20D (1), ¢ >)

end
end
t—t+1;

end

Assumption 1. The functions ul(-l),Vl =1,...,L,Vi =

1,...,NU=1 are twice continuously differentiable.

Assumption 2. —ng)uz(-l) are monotone VI =

1,...,L,Yi = 1,...,NUU. The solution set of

v oul! = 0wl = 1,...,L¥i = 1,...,NO=D js
Z;

nonempty, with solutions in the interior of the action spaces.

Let FO be defined as in Equation (3) for each level-
pseudo-utility.

Assumption 3. F) satisfy the Py condition.

Note that these assumptions directly generalize the condi-
tions required for the convergence of BRD to our multi-scale
pseudo-utilities. The following theorem formally states that
SH-BRD converges to a NE for 2-level games.

Theorem 2. Suppose L = 2. If Assumptions 1 and 3 hold,
SH-BRD converges to a NE, which is unique.

The full proof of this theorem, which makes use of the
connection between SH-BRD and SVI, is provided in the
Supplement due to space constraint. The central issue, how-
ever, is that there are no established convergence guarantees
for ADM-based algorithms for SVI with 3 or more separa-
ble operators. Alternative algorithms for SVI can extend to
the case of 3 operators using parallel operator updates with
regularization terms, but no approaches exist that can han-
dle more than 3 operators (He, 2009). We thus propose an
algorithm for iteratively solving multi-scale games that uses
the general idea from SH-BRD, but packs all levels into two
meta-levels. The two meta-levels each has to be comprised



of consecutive levels. For example, if we have 5 levels, we
can have {1, 2,3} and {4, 5} combinations, but not {1, 2,4}
and {3,5}. Upon grouping levels together to obtain a meta-
game with only two meta-levels, we can apply what amounts
to a 2-level version of the SH-BRD. This yields an algo-
rithm, which we call Hybrid Hierarchical BRD (HH-BRD),
that now provably converges to a NE for an arbitrary number
of levels L given assumptions 1-3.

As presenting the general version of HH-BRD involves
cumbersome notation, we illustrate the idea by presenting it
for a 4-level game (Algorithm 4). The fully general version
is deferred to the Supplement. In this example, the objectives
of the meta-levels are defined as

= (o)1)
©i3

~ (sl 3 4 sla,sl 3 3

W =l el 2 (o))

ALGORITHM 4: Hybrid Hierarchical BRD

Initialize the game, t = 0, mZ(l)(O) = (x0)i,i=1,...,N©
for [ = 2:4 do
for k= 1:N" do
! 1
| 20 =0 @0 (0):

end

end

while not converged do

for k = 1:N® (Meta-Level-1 Penalty Update) do
‘ Update Lg:ll’sb)

end
fori=1:N® (Level-1) do
et +1) =
BR, (xg)(t),xi)w 1), 2 (t),agsm)
end

for j = I:N® (Level-2) do
| P+ ) =0 @+ 1)
end
for k = 1:N® (Meta-Level-2 Penalty Update) do

‘ Update ijb‘sh)
end

fork=1: N® (Level-3) do
o0+ 1) = B (o o (0 1)),

4 ~ (sl 3 4
20,3 ). (of? € 1)

end
for p = I:N® (Level-4) do

g (t+1) = 0" (@ g (t+ 1))
end ’
t+—t+1;

end

Theorem 3. Suppose Assumptions 1-3 hold Then HH-BRD
finds the unique NE.

Proof Sketch. We first “flatten” the game within each meta-
level to obtain an effective 2-level game. We then use The-
orem 2 to show this 2-level game converges to the unique
NE of the game under SH-BRD. Finally, we prove that SH-
BRD and HH-BRD have the same trajectory given the same
initialization, thus establishing the convergence for HH-
BRD. For full proof see Supplement, Appendix D. O

HH-BRD combines the advantages of both MS-BRD and
SH-BRD: not only does it exploit the sparsity embedded
in the network topology, but it also avoids the convergence
problem of SH-BRD when the number of levels is higher
than three. Indeed, there is a known challenge in the re-
lated work on structured variational inequalities that con-
vergence is difficult when we involve three or more oper-
ators (He, 2009), which we leverage for our convergence
results, with operators mapping to levels in our multi-scale
game representation. One may be concerned that HH-BRD
pseudocode appears to involve greater complexity (and more
steps) than SH-BRD. However, this does not imply greater
algorithmic complexity, but is rather due to our greater elab-
oration of the steps within each super level. Indeed, as
our experiments below demonstrate, the superior theoreti-
cal convergence of HH-BRD also translates into a concrete
computational advantage of this algorithm.

5 Numerical Results and Analysis

In this section, we numerically compare the three algorithms
introduced in Section 4, as well as the conventional BRD.
We only consider settings which satisfy Assumptions 1-3;
consequently, we focus comparison on computational costs.
We use two measures of computational cost: floating-point
operations (FLOPs) in the case of games with a linear best
response (a typical measure for such settings), and CPU
time for the rest. All experiments were performed on a ma-
chine with A 6-core 2.60/4.50 GHz CPU with hyperthreaded
cores, 12MB Cache, and 16GB RAM.

Games with a Linear Best Response (GLBRs) GLBRs
(Bramoullé, Kranton, and D’amours, 2014; Candogan,
Bimpikis, and Ozdaglar, 2012; Miura-Ko et al., 2008) fea-
ture utility functions such that an agent’s best response is
a linear function of its neighbors’ actions. This includes
quadratic utilities of the form

ui(wi, xr,) = a; + biz; + (Z gijxj)l'i — i, (11)

jel;
since an agent’s best response is:

BR;(1,,u;) = % — by

We consider a 2-level GLBR and compare three algo-
rithms: BRD (baseline), MS-BRD, and HS-BRD (note that
in 2-level games, HH-BRD is identical to HS-BRD, and
we thus don’t include it here). We construct random 2-level
games with 10,000 agents and 100 groups (level-2 agents),
with utility functions based on Equation (11). Specifically,



we generalize this utility so that Equation (11) represents
only the level-1 portion, ugl), and let the level-2 utilities be

uP (@ en) =Y vgr®
pF#k

for each group k. At every level, the existence of a link be-
tween two agents follows the Bernoulli distribution where
P..;s¢ = 0.1. If a link exists, we then generate a parameter
for it. The parameters of the utility functions are sampled
uniformly in [0, 1] without requiring symmetry. Please refer
to Appendix E and E.1 for further details. Results compar-
ing BRD, MS-BRD, and SH-BRD are shown in Table 5.
We observe dramatic improvement in the scalability of using
MS-BRD compared to conventional BRD. This improve-
ment stems from the representational advantage provided
by multi-scale games compared to conventional graphical
games (since without the multi-scale representation, we have
to use the standard version of BRD for equilibrium compu-
tation). We see further improvement going from MS-BRD
to SH-BRD which makes algorithmic use of the multi-scale
representation.

Size BRD MS-BRD SH-BRD

302 (2.5140.18)x 106 (1.0320.07)x 10° (9.812:0.81)x 10*

502 (2.53+0.18)x107 (5.33+0.04)x10° (4.3540.07)x 10°

1002 (4.46+0.32)x 108 (4.3640.31)x10° (3.56-:0.29) x 106

2002 (6.7340.58)x 10 (3.48-£0.29)x 107 (2.7940.21)x 107

500% (2.84+0.21)x 101(5.69+0.41)x 10 (4.044-0.29)x 108

Table 1: Convergence and complexity (flops) comparison
with linear best response under multiple initialization.

Games with a Non-Linear Best Response Next, we study
the performance of the proposed algorithms in 2- and 3-level
games, with the same number of groups in each level (we
systematically vary the number of groups). Since HS-BRD
and HH-BRD are identical in 2-level games, the latter is
only used in 3-level games. All results are averaged over
30 generated sample games. The non-linear best response
fits a much broader class of utility functions than the lin-
ear best response. The best responses generally don’t have
closed-form representations. In this case, we can’t use lin-
ear equations to find the best response and instead have to
apply gradient-based methods. In our instances, the utility
with non-linear best responses is generated by adding an ex-
ponential cost term to the utility function used in GLBRs.
Please refer to Appendix E and E.2 for further details.
Table 2 shows the CPU time comparison between all algo-
rithms. The scalability improvements from our proposed al-
gorithms are substantial, with orders of magnitude speedup
in some cases (e.g., from ~ 25 minutes for the BRD base-
line, down to ~ 12 seconds for SH-BRD for games with
10K agents). Furthermore, BRD fails to solve instances with
250K agents, which can be solved by SH-BRD in ~ 42 min.
Again, we separate here the representational advantage of

Size  BRD MS-BRD SH-BRD
302 1.50+0.05 1.02-0.02 0.54+0.01
502 26.70£0.36  3.70+0.14 1.81+0.04
1002 151249 23.81+0.69  12.10+0.13
2002 > 18000 287.245.4 133.6+2.5
5002  nan 5485+13's 2524+10

Table 2: CPU times on a single machine on 2-Level games
with general best response functions; all times are in sec-
onds.

multi-scale games, illustrated by MS-BRD, and algorithmic
advantage that comes from SH-BRD. Note that SH-BRD,
which takes full advantage of the multi-scale structure, also
exhibits significant improvement over MS-BRD, yielding a
factor of 2-3 reduction in runtime.

Size BRD MS-BRD SH-BRD
302 1.2140.04 0.63+ 0.01 0.037+0.003
502 23.8840.16 1.99+0.04 0.079+0.004
1002 1461+14 15.4940.24 0.304+-0.006
2002 > 18000 192.0+1.2 1.87+0.05
5002 nan 4258456 s 28.79+0.37

Table 3: CPU times on a single machine for 2-Level, lin-
ear/nonlinear best-response games; all times are in seconds.

Our next set of experiments involves games in which
level-1 utility has a linear best response, but level-2 utility
has a non-linear best response. The results are shown in Ta-
ble 3. We see an even bigger advantage of SH-BRD over
the others: it is now typically orders of magnitude faster
than even MS-BRD, which is itself an order of magnitude
faster than BRD. For example, in games with 250K agents,
in which BRD fails to return a solution, MS-BRD takes
more than 1 hour to find a solution, whereas SH-BRD finds
a solution in under 30 seconds.

Size BRD MS-BRD SH-BRD HH-BRD
103 1.2340.03  0.59+0.01 0.76+0.03  0.43+0.02
203 696.0+8.7 3.78+0.09 6.054+0.08 3.35+0.09

30% > 18000 15.70+0.11 25.13+0.14 13.39+0.11
50% nan 68.59+0.75 138.8+1.1 57.98+0.69
1002 nan 11266 2343+21  877.1+11.5

Table 4: CPU times in seconds on a single machine on 3-
Level, general best response games; all times are in seconds.



Finally, Table 4 presents the results of HH-BRD in games
with > 2 levels compared to SH-BRD, which does not
provably converge in such games. In this case, HH-BRD
outperforms the other alternatives, with up to 22% improve-
ment over MS-BRD; indeed, we find that SH-BRD is con-
siderably worse even than MS-BRD.

6 Conclusions and Future Directions

We proposed a novel representation of games that have
a multi-scale network structure. These generalize network
games, but with special structures that agent utilities are ad-
ditive across the levels of hierarchy, with utility at each level
depending only on the aggregate strategies of other groups.
We present several iterative algorithms that make use of the
multi-scale game structure, and show that they converge to
a pure strategy Nash equilibrium under similar conditions as
for best response dynamics in network games. Our exper-
iments demonstrate that the proposed algorithms can yield
orders of magnitude scalability improvement over conven-
tional best response dynamics. Our multi-scale algorithms
can reveal to what extent one’s group affiliation impacts
one’s strategic decision making, and how strategic interac-
tions among groups impact strategic interactions among in-
dividuals.

While the issue of multi-scale networks abounds in the
network science literature (e.g., hierarchical clustering, etc.),
the “multi-scale” part is primarily concerned with commu-
nity structure in networks, rather than modeling how how
communities interact, which is critical for us in describing
a formal multi-scale structure for games. Thus a very im-
portant future direction is to identify and obtain relevant
field data for experiments, and create realistic benchmarks
for multi-scale games. This would involve identifying ways
to obtain data about how communities (and not just indi-
viduals) interact. Once we have the ability to collect data
about interactions at multiple scales (e.g., among members
and among groups), we can apply our algorithms to such
multi-scale networks. To use criminal networks (criminal or-
ganizations and their members) as an example, given game
models constructed with the help of domain expertise, we
can:

1. compute equilibria predicting, say, criminal activity as a
function of structural changes to organizations;

2. infer utility models from observational data at multiple
scales;

3. study policies (including strengthening or weaken-
ing connections between agents or groups, endowing
agents/groups with more resources (lower costs of effort),
etc.) that would induce more desirable equilibrium out-
comes.
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Appendices

A Structured Variational Inequalities

A structured variational inequality SVI,, arises when a VI
problem has n separable operators. This is used to analyze
our game under the multi-scale perspective described in Sec-
tion 3.

We now introduce a particular type of SVI, relevant to
our model. Suppose the N level-1 agents form M disjoint
groups in the game and S; denotes the jth level-1 group,
whereby i € S; denotes that a; is a member of .S;. Consider
the following utility function of a;:

ui(xiamfi; y]??!*j) = uz(l) (x“xfl) +u§2) (ijyfj)v (12)

where £ € R” denotes the level-1 action profile and y €
RM denotes the level-2 action profile, and Az +y = 0, for

-1, ifiesS;
A= ’ Jj=1,....M,i=1,...,N.
J {07 GISG aj ) 9 aZ 9 )

Thus Az +y = 0 is equivalent to y; = Ziesj ;. We say
and y are two separated operators, and define

N
FO(z) = (- vmiugl)@)) , w e KW,
=1

F2(y) = (_ Vyj“§2)(y>> Ly € K,
Jj=1

N M
EO=T[&O, £k =[P K = K© x K@,
i=1 j=1
7 —— F(l)(a:)}
v=|% ek, Flv)= . 13)
H @ ={rg) (

Define ) = {v € K|Az +y = 0}. Then the VI(Q), F)
problem is to find v* € €, such that: (v — v*)TF(v) >
0, Yv € . This problem is equivalent to the SVI, problem
VIOW, Q) defined in Eqn (14)

(w-w)"Qw) >0, Ywe W, (14)
where, W = K x RM and

X
w= <y> ,Qw) =
A

It is easy to see that if we use Ziesj x; to replace yj,
then we again have a single operator £ and can construct
a VI(K, I) as outlined in Section ??. There is a one-to-one
mapping between a solution £* to VI(K, F') and a solution
w* = (x*, —Az*,A*) to VIOV, Q). Therefore, solving ei-
ther VI(K, F') or VIO, Q) finds the set of NEs.

FM(z) — AT
FO(y)— ) (15)
Ax +y

B Uniqueness of NE

We will introduce some special matrices before we move on
to the sufficient conditions for the uniqueness of NE.

Definition 2. Some special matrices:

1. P-matrix: A square matrix is a P-matrix if all its principal

components have positive determinant

2. Z-matrix: A square matrix is a Z-matrix if all its off-

diagonal components are nonpositive

3. M-matrix: An M-matrix is a Z-matrix whose eigenvalues’

real parts are nonnegative

4. L-matrix: An L-matrix is a Z-matrix whose diagonal ele-

ments are nonnegative

For an arbitrary mapping ' : RN — R, we denote the
Jacobian of F'(z) as JF(x). And then V; F; = [JF(x)];;

Checking if a matrix is P-matrix or not is still not trivial,
and we can look at the spectral radius of a matrix instead.

Theorem 4. The Pr condition:
We define the I' matrix generated from F’ as follows

0 _B(F) . Bun(F)
a1 (F) a1 (F)
_ B2,1(F) 0 _ Ba,n(F)
rF)=| " 2
CBwaP)  _Bna(®) 0
ay (F) an (F)

(16)
if the spectral radius p(T'(F)) = ||T(F)||l2 < 1, then we
say F' satisfies the Pr condition. Then Pr condition < Py
condition and VI(K, F') has a unique solution.

In Scutari et al. (2014), the authors mentioned that the Py
captures “some kind of diagonal dominance”. In fact, the
strong diagonal dominance(s.d.d) or weakly chained diago-
nal dominance(w.c.d.d) of T can be an easier yet sufficient
condition to check.

Theorem 5. If Y is s.d.d or w.c.d.d, the NE is unique, since

T is an s.d.d L-matrix
= T is a w.c.d.d L-matrix
< T is a nonsigular weakly diagonally dominant(w.d.d)
L-matrix
< T is a nonsigular w.d.d M-matrix
= T is a P-matrix
Also, when T is s.d.d, ' is a (right, row) substochastic ma-
trix and thus p(I") < 1 trivially holds and the NE is unique.
The Py condition guarantees both the uniqueness of NE

and the convergence of BRD. Please refer to Parise and
Ozdaglar (2019) for more conditions on the uniqueness.

C Proof of Theorem 2

Proof. This algorithm is designed to solve the SVI problem
presented in Eqn (14) and (15). We denote H = idiag(h),
and the norm ||z||g, where G > 0 as

lz||¢ = 2" Gz.

For simplicity reason, we will use z and y to replace z(")
and £(?) in the remainder of the proof.
We can rewrite the steps in Algorithm 3 as follows:

* Step O: Initialization, given €, u and xo, let t = 0, £(0) =
xo, Yi(0) = ok (zs, (0)); arbitrarily choose A(0).



* Step 1: Find z* € K() that solves

@ o) | 1)~ AT - H(as (0] >0,
(17)
forVe’ € K,andsetz(t + 1) = z*.
« Step 2: Find y* € K? that solves

v —y)" [f(m*) — () - H(Az(t+1) + y*)]] >0,
(13)

forVy' € K, andsety(t + 1) = y*.
 Step 3: Set

A(t+1) =A(t) — HAz(t+1) —y(t+1)) (19

* Step 4: Convergence verification: If ||w(t+1) —w(t)|| 0 <
€, then stop. Otherwise let ¢ <— ¢ + 1 and go back to Step
1.

When we have y(t + 1) = y(¢) and A(t + 1) = A(¢),
w(t+1) = (2(t+1),y(t+1),A(t+1)) is the solution to our
SVI,. We denote the unique solution as w* = (z*,y*, A*).
From Eqn (18) and (19), we have the following from Section
2 of (He, 2009),

lly(t +1) =y | + A+ 1) = A[[7-

§<wwyﬂ%+lMﬂAW%4)

- (Ily(t +1) —yOlF + A +1) - /\(t)II?w)
<|ly(t) =yl + [IA() = N[5, (20)

which shows the contraction property of the sequence
{(y(t),A(t))} and thus proves the convergence of the algo-
rithm.

A more detailed proof of convergence of the above steps
in Eqn (17)-(19) is covered in (Gabay and Mercier, 1976;
Glowinski and Oden, 1985), and a more generalized version
of the above steps and convergence proofs are covered in
(Tseng, 1990; Lions and Mercier, 1979).

O

D Proof of Theorem 3

D.1 Full version of HH-BRD

We will first show the ull version of HH-BRD, suppose the
superlevel partitions is taken between level ¢ — 1 and level
g, thenfori=1,...,N®),

q—1

~(sly) )

Uy _Zuk” (xkiwa’.fkll)
=1

kiq g

— Lijil,Slz) (O-I(Ci;q) (xs(}_’(“ )a x](s) ) ) (21)

where .
S50 = {ai” | kig =},

1,q _ E (1)
Jé )(‘TS,(,I"I)) = x; .
aEI)ESE,I’q)

Andforj=1,..., N@
L
~ (sl l
alet) :Zu;]?L (wh,0 21, ,)
l=q

. L§sl2,sl1) (l.gq)’ O_](LQ) (mS](.l’Q))> . (22)

Please refer to Algorithm 5 for the pseudo code of the
full version of this algorithm. The loss function updates are
similar to that of Algorithm 3.

ALGORITHM 5: Hybrid Hierarchical BRD(Full Version)
Initialize the game, t = 0, :cgl)(O) = (xo)i,i=1,...,N©
for /= 2:Ldo
for k= 1:N do

| #0) =0 @0 (0):
end

end
while not converged do
for k = 1: N9 (Meta-Level-1 Penalty Update) do
| Update L{*'*")
end
fori=1: NV (Level-1/Meta-Level-1 Gaming) do
aM(t+1) =

1 2 3 ~ (sl
BRi<z§i)(t),m§k12(t),...,xgii(t),u(- 1>)

end
for [ = 2:q-1 (Level-2 to Level-q Aggregation) do
forj=1:N® do

l !
‘ e (t+1) = §)(z5§1)(t+1))

end
end
for k = 1: N9 (Meta-Level-2 Penalty Update) do
‘ Update L,(fl?’sh)
end
forj=1: N@ (Level-g/Meta-Level-2 Gaming) do

x§q) (t+1)

_ | (L) (9) (g+1)
= BR; (Uj (zsgl,q) ),.’L‘Ij (t)’mlkj(q+1) )y ey

(L) - (sl2)
xfkjL (t)7uj 2 )

end
for | = g+1:L (Level-2 to Level-q+1 Aggregation) do
forp = 1:N® do
2 (t+1) = 03 (@ g (t +1))
end

end
t+—t+1;

end




D.2 Proof of Theorem

We will first construct an equivalent 2-level game to the L-
level game where L > 2, and then show that the action pro-
file update trajectories are the same for the original game and
he equivalent game. Finally, the convergence of the equiva-
lent game follows Theorem 2 and thus Algorithm 4 guaran-
tees convergence.

Proof. We define the following counter-part for utility com-
ponent ul(-l)(xl(l)7x§li)) 1I<i<yg

@ _
u; (27551,1) ,.’L'Sl(r},z)) =

u @ al)), @3
when x() = (“)( Tg0. n), Vi, ¥l € {2,...,¢ — 1}. Both

Tga0 and I are level-1 action proﬁles This is exactly
how we create the utility functions under the flat perspective,
where we expand the higher level aggregate actions down to

level-1.
Similarly, we define the following counter-part for utility

component ug-l)(x;l),xg?) (g<l<L)

u;l)(zsﬁq,z)7ms§7,z)) = u;l)(x§1)7z(l?)7 24)
j

when 2\ = o{"Y(z Tgwn) ViVl € {g.....L}. Both
x S0 and = S(l 1) are level q action profiles. This time we

expand the hlgher level aggregate actions down to level-q
instead of level-1.

So then we can define a “flattened” super-level-1 utility

function counterpart for ul(-sh)

as follows
-1

— O]
= g (xS,il_’l)’xS§1‘l)>
1 il kg

Lot (ag,q)(zsw)) m}i@) ,
(25)

Q

) a0 )

where (ol) @
li‘ Vo= {aj |qu = kiqaj 7é Z}
Similarly, for meta-level 2, we can define a “flattened”’(to

level-q) function counterpart for ug-SZZ)
s(q 15 & gla.t) )

,(51 ) ( )
Uy ’ ( 1%512) Zu
kjL

sla,sl 1,
—L; 2 1)(x§'@70§ q)(msj(l,q))),

(26)

as follows

where (sla)
I = {a(|kyp, = kjp.p # j}-
So now we can create a 2-level game where the level-
1(resp. level-q) agents in the original game become the level-

1(resp. level-2) agents in the new game with utility functions
defined in Eqn (25) (resp. Eqn (26)). Based on Theorem 2,

we know that if we apply SH-BRD, we can converge to the
unique NE of the game under Assumptions 1-3.

Then it remains to show that given the same initialization,
applying HH-BRD in the original game and the MS-BRD in
the new 2-level game generate the same level-1 action profile
update trajectory. This can be shown using induction.

We know from initialization that

2(0) = o™ (@ 40,0 (0)), Vi, ¥l € {2,...,q¢ — 1},

2(0) = o\ (2 Z g (0)). Y3, € {q, ..., L},
Then based on Eqn (23), we know that
sl 1 1
ul (@, 2(0),. 2l (0))

:E,(-Sll)(mzl) #7(0))
& BRi( (0., (0),4;™"))
= BRi(x <”<> . >>

and thus when ¢ = 1, (1) (¢) are the same when applying
HH-BRD in the original game and the MS-BRD in the new
2-level game. Similarly, 2(9) (1) are the same based on Eqn
(24).

Suppose (1) (t) and (%) (¢) are the same for the two dy-
namics fort = 0,1,..., 7, we need to show that (! (¢) and

x(9(t) are the same for t = T + 1 to complete the proof.
Again, based on Eqn (23), we know that
sl 1 1
ul @V, e(1), .2 (1))
=" (@], (T))

PN BRi( (1) ) (q)(T),uESll))
(a}

(T

O

) are the same for the two dynamics
1)

are the same based on Eqn (24).
O

), *““)

= BRZ' u

which implies .'1:(1) (T+
and similarly 2(9) (T +

E Data Generation for Numerical
Experiments

We introduce the data generation procedures for both games
with linear best response and non-linear best response in this
part.

First of all, for both type of games, we create an adjacency
matrix for each of the groups on every level. This matrix has
0 diagonal elements and for the off-diagonal elements, the
existence of a directed edge subjects to the Bernoulli distri-
bution where there is a fixed P.,;s¢. Then if a directed edge
exist, the edge weight is generated by choosing a value from
[0,1] uniformly at random. Later, we will multiply these
matrices with different scalars to adjust the values so that
Assumption 3 holds. These matrices have 0 diagonal ele-
ments because they capture the dependencies of agents on
each other, or equivalently, they are used to model the exter-
nal impact the agents receive from the network. The internal
impact are modeled by cost functions and marginal benefit
terms that only depend on an agent’s own action.



E.1 Linear Best Response Games

For games with linear best response, we generated a 2-level
game with 100 groups and 10,000 level-1 agents. The adja-
cency matrix generation follows P,.;s; = 0.1, which creates

a rather sparse network. Each level-2 group S ,EQ) contains
100 members, and we use Wy, to denote the corresponding
adjacency matrix. We use V' to denote the level-2 adjacency
matrix. From Eqn (6), we know that for each level-1 agent,
the utility function is

1) (1) (2 1, 1) (1 2
wie 2 2 ) = oV @l 20 0l () ),
where
ugl)(:cgl),zg)) = biCC,El) + :cgl) < Z(Wkﬂ)nr, 51))
Jjel;
= ei(ai)?,
e ) = o (3 Viart? )

p#k

We choose the cost coefficients ¢; to be large enough so
that the Y'(F') satisfies the Py condition(from Appendix A,
strong diagonal dominance implies Py condition). In the ex-
periments, the p(T')(Se Appendix A for I') has a value be-
tween [0.7,0.8].

Then under the flat perspective, a level-1 agent agl) has
the following utility function

a0 = bl 0 (Sl

JFi
fcv( (1)) +di7

where
_ (1) flat (1
di= a5 Wi
i€l p¢Sy)
Wi Vig-1 Vi100-1
— Vai-1 W, Va,100 - 1

Vi1 -1 Vico2-1  Wigo

here 1 represents the all 1 matrix of suitable size(100x 100).

E.2 General Best Response Games

For games with general(non-linear) best response, we gener-
ated data using the graphical game model similarly like the
above. However, this time we use a mixed cost term that is a
weighted sum of a quadratic component and an exponential
component. Therefore, we can no longer represent the best
response functions as linear functions and the best response
computing now relies on gradient based optimization steps.
In the experiments shown in the main article, the adjacency
matrix is generated following P,.;s; = 0.1, which creates a
sparse network. We also tried P.,;s; = 1 and the results on
the dense networks are included in this part of the appendix.

We use Wi(l) to denote the adjacency matrix within SZ.(Z)

and W(HD to denote the adjacency matrix between high-
est level agents. For the 2-level games with general best re-
sponse, the utility components are set as follows

0.0 = 0s? (T 0)
JEI;

_ Cz( (1)) 60.1151)

2 2 2 2 3 2
o2l ) = (S Wusl?)
J#i
— 18] 0127 /151,
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For 3-level games with general best response, the com-
ponents in level-1 and 2 remain the same, and the level-3
components are

W@ (@, 2) 3)(2 )
J#i
_ |S-(1’3)| 01
K]

For the 2-level games with linear/nonlinear best response,
the utility components are set as follows

1 1 1 1 1 2 1
Dl al?) = el o (L7l

JEI;

3 1,3
2 /152

—cilaf),
2 2 2 2 3 2
o o) = (S ral? )

i
~159). 0122 /152
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Again, the adjacency matrix and the cost terms will be
scaled to ensure that Assumption 3 holds, and in the experi-
ments, the p(T")(Se Appendix A for I') has a value between
[0.7,0.8].

Hyperparameter settings: besides the parameters in the
graphical games, the parameter hl(-l) in the loss function up-
dates in Eqn (10) is chosen arbitrarily. These parameters can
also be referred to as “penalty parameters”. In our exper-
iments, the performance over these parameters are rather

smooth under assumption 3. The hyperparameters hz(-l) are
set to the same value on each level [. In the 2-level case,
we perform a binary search on these hyperparameter, where
each value is tested for 5 runs to see the average perfor-
mance. For the 3-level case, we need to determine 2 hy-
perparameter values, and this is done by a fixed step size
search performed iteratively on the two values. We tune the
first one, each value is tested for 5 runs like the above, while
fixing the second value, after that, we switch to the tuning
of the second value and this process keeps iteratively. The
parameters we used in the numerical experiments are

. 2Levelgame h( ) = 0.2,0.1,0.06,0.03, 0.01; for net-
work sizes 302, 502 1002 2002 5002 respectively. With
tuning range [0, 0.5].



* 3-Level game:
For SH-BRD: (h{”,n\¥) = (0.65,0.1), (0.32,0.03),
(0.2,0.01), (0.12,0.006), (0.04, 0.003); for network sizes
103,203, 30%, 502,100 respectively. With tuning range
[0,0.5]? and tuning step 0.002.

For HH-BRD: A*") = 0.7,0.3,0.21,0.125,0.063 for
network sizes 10° ,203, 303,503, 1003 respectively. With
tuning range [0, 0.5]

Under the current parameter settings, we still haven’t
bring out the best performances of SH-BRD, and HH-BRD.
In act, the performance gap between the current setting and
the optimal setting won’t be too large since the best response
steps are well-posed. And even with their sub-optimal per-
formances, we have seen their advantages over other algo-
rithms.

In (He, Yang, and Wang, 2000), the authors mentioned an
adaptive method to generate the penalty parameter matrix
H which is generally not diagonal, that can speed up the
problem solving steps. This will be an interesting direction
to generalize our current algorithm when the best response
functions become more ill-posed in the future.

E.3 CPU Specs:

e CPU: 6 cores, 12 threads, 2.60/4.50 GHz, 12MB Cache
* OS: Windows 10

* Software: Python 3.7

« RAM: 16 GB

E.4 Results on Dense Networks

Size BRD MS-BRD SH-BRD

302 (2.9740.24)x107 (9.9140.81)x10° (8.31+0.66) x 10°

502 (2.414+0.22)x 108 (4.8340.45)x 10 (3.27+0.30)x 10°

1002 (4.07£0.34)x 10° (4.0740.34)x 107 (3.04-20.22) x 107

200% (6.66+0.62)x10'°(3.33+0.31)x 10® (2.4440.17)x 108

500% (2.7240.29)x 10*2(5.53+0.49)x 10° (3.264-0.26) x 10°

Table 5: Convergence and complexity (flops) comparison
with linear best response under multiple initialization, dense
network.

We can see that though the results in linear best response
games are very different in sparse and dense networks, the
results in games with non-linear best responses are quite
similar in both types of networks. In games with linear best
responses, the standard deviation results from different ini-
tialization. For the same game, one initial action profile’s
distance(measured in Euclidean norm) to the equilibrium
point can be 20 times to the distance of another initial ac-
tion profile. This results in different number of iterations
of the algorithm before convergence. However, it only takes
about 20% more iterations for a “distant” initial action pro-
file to reach convergence, which shows that these algorithms

Size  BRD MS-BRD SH-BRD
302 0.99+0.03 0.49+0.02 0.240.01
502 22.80+£0.05  1.83+0.06 0.69+0.01
1002 1351+7 13.2840.26  4.70+0.06
2002 > 18000 159.940.8 58.07+0.42
5002  nan 3505+54 1286420

Table 6: CPU times on a single machine on 2-Level games
with general best response functions, dense network; All
times are in seconds.

Size BRD MS-BRD SH-BRD
302 1.6340.12 0.57+ 0.02 0.028+0.002
502 30.65+0.35 1.94£0.03 0.051+0.003
100% 166043 13.934+0.25 0.33+£0.02
200% > 18000 163.1+1.4 1.321+0.04
500 nan 3416152 29.374+0.91

Table 7: CPU times on a single machine for 2-Level, lin-
ear/nonlinear best-response games, dense network; All times
are in seconds.

Size BRD MS-BRD SH-BRD HH-BRD
103 1.254+0.02 0.39+0.01 0.57+0.02  0.3440.01
203 617.3+4.7 2.85+0.07 4.504+0.06 2.56+-0.06

30% > 18000 10.25+0.25 17.87+0.14 9.53+0.09
503 nan 58.04+0.32 100.8+0.41 51.86+0.24
1002 nan 926.8+6.4 2131+£11 780.9+3.0

Table 8: CPU times in seconds on a single machine on
3-Level, general best response games, dense network; All
times are in seconds.



have good convergence property under Assumptions 1-3. In
games with non-linear best responses, the standard devia-
tions of CPU times are relatively small(around 1%) com-
pared to the mean values, and it shows that the performance
of all algorithms are stable with a fixed initial action profile.

F Algorithm Performances and Network
Sizes

In this part, we present some results that show the algo-
rithms’ performances with different network sizes in 2-level
games.

Figure 2 shows the number of flops per iteration for the
three algorithms in I x M games where I is the number of
agents in each group and M the number of groups in the
network. Both Algorithms 2 and 4 outperform Algorithm
1. Algorithm 4 generally has lower complexity per itera-
tion compared to Algorithm 2 since it has less input in every
sub-problem and the number of sub-problems are similar in
Algorithm 2 and 4 when the group sizes are large. How-
ever, when group sizes are small compared to the number of
groups, Algorithm 2 and 4 are similar per iteration.
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Figure 2: Complexity per iteration for linear best response.

G Reverse Engineer Multi-scale Structure

A question that naturally arises is whether sparsity in the
network can be exploited when the multi-scale structure is
not readily available. The utility function in Eqn (6) sug-
gests that such reverse engineering is possible if the game
satisfies:

1. Anagent is either connected to all agents in another group
or not connected to any agent in that group; If so, we can
create a set of possible group partitions.

2. Based on the partition in the previous step, agents in one
group have the same dependency on an agent in another
group.

3. Based on the partition, we can represent the groups’ ag-
gregate actions from their members’ actions using some
aggregate functions.

4. Based on the partition, the original utility function of each
agent can be separated to components on different levels,
each component only based on the actions and dependen-
cies on the corresponding level.

An example of the first condition is shown in Figs. 3 and
4. For the other conditions, the “flattened” utility functions
used in Appendix E are good examples.

.

Figure 3: Ungrouped.

Figure 4: Grouped.
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