
MIPaaL: Mixed Integer Program as a Layer

Aaron Ferber,1 Bryan Wilder,2 Bistra Dilkina,1∗ Milind Tambe2

1University of Southern California, 2Harvard John A. Paulson School of Engineering and Applied Sciences
aferber@usc.edu, bwilder@g.harvard.edu, dilkina@usc.edu, milind_tambe@harvard.edu

Abstract

Machine learning components commonly appear in larger
decision-making pipelines; however, the model training pro-
cess typically focuses only on a loss that measures aver-
age accuracy between predicted values and ground truth val-
ues. Decision-focused learning explicitly integrates the down-
stream decision problem when training the predictive model,
in order to optimize the quality of decisions induced by the
predictions. It has been successfully applied to several lim-
ited combinatorial problem classes, such as those that can be
expressed as linear programs (LP), and submodular optimiza-
tion. However, these previous applications have uniformly
focused on problems with simple constraints. Here, we enable
decision-focused learning for the broad class of problems that
can be encoded as a mixed integer linear program (MIP), hence
supporting arbitrary linear constraints over discrete and contin-
uous variables. We show how to differentiate through a MIP
by employing a cutting planes solution approach, an algorithm
that iteratively tightens the continuous relaxation by adding
constraints removing fractional solutions. We evaluate our
new end-to-end approach on several real world domains and
show that it outperforms the standard two phase approaches
that treat prediction and optimization separately, as well as a
baseline approach of simply applying decision-focused learn-
ing to the LP relaxation of the MIP. Lastly, we demonstrate
generalization performance in several transfer learning tasks.

Introduction
We propose a method of training predictive models to di-
rectly optimize the quality of decisions that are made based
on the model’s predictions. We are particularly interested
in decision-making problems that take the form of mixed
integer programs (MIPs) because they arise in settings as
diverse as electrical grid load control (Mohsenian-Rad and
Leon-Garcia 2010), RNA string prediction (Sato et al. 2011),
and many other industrial applications (Nemhauser 2013).
MIPs naturally arise in so many settings largely due to their
flexibility, computational complexity (ability to capture NP-
hard problems), and interpretability. In many practical situa-
tions it is often necessary to predict some component (e.g.,
the objective) of the MIP based on historical data, such as

∗Corresponding author
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

estimated demand (O’Mahony and Shmoys 2015), price fore-
casts (Demirovic et al. 2019), or patient readmission rate
(Chan et al. 2012). Alternatively, practitioners may use a
MIP to enforce that the outputs of the predictions meet
semantically meaningful objectives such as ensuring pre-
dictions result in making fair decisions downstream (Ben-
abbou et al. 2018; Trilling, Guinet, and Le Magny 2006;
Warner 1976). In these settings with a prediction and opti-
mization component, the predictive models are often trained
without regard for the downstream optimization problem. For
example, the mean squared error will consider errors for dif-
ferent examples to have the same importance. However, in
practice it may be more important to distinguish between
some values rather than others, meaning average error met-
rics may ignore impactful distinctions. Consider predicting
item costs for a unit-weight knapsack setting, where we try to
select 5 items minimizing total cost. Training a model to min-
imize mean squared error will concentrate model capacity on
getting all values correct on average, and in fact multiplica-
tive errors for large values will dominate the loss function.
However, in this setting, we would rather dedicate capacity
to correctly predicting cost for items which are potentially in
the cheapest set of items over capturing the nuances between
items that are unlikely to be in our set. As such, good average
predictions may not lead to high quality decisions.

Decision-focused learning, introduced for a financial cri-
terion in (Bengio 1997) and extended to the more general
quadratic programs in (Amos and Kolter 2017), and linear
programs in (Wilder, Dilkina, and Tambe 2019), explicitly
and automatically integrates the downstream decision prob-
lem when training the predictive model, in order to optimize
the quality of decisions induced by the predictive model. In
the commonly used gradient-based predictive models, the
central challenge is in passing gradients back to give the pre-
dictive model an indication of how it should shift its weights
in order to improve decision quality of the resulting optimal
solution. The discrete and discontinuous solution space that
makes the MIP so widely applicable also prevents us from
easily differentiating through it, as has been done for embed-
ding continuous optimization problems in neural networks
(Amos and Kolter 2017; Wilder, Dilkina, and Tambe 2019;
de Avila Belbute-Peres et al. 2018). Our approach for com-
puting gradients relies on the fact that we can algorithmically
generate a continuous surrogate for the original discrete op-

timization problem. We employ previous work on cutting
plane approaches, which can tighten a MIP relaxation by
iteratively solving a continuous relaxation and cutting off the
discovered integer infeasible solution until an integer feasible
solution is found (Gomory 1960). The final continuous, and
convex, optimization problem can then be used for backprop-
agation by differentiating the KKT conditions (Karush 1939)
of the continuous surrogate, as has been suggested for con-
vex problems (Amos and Kolter 2017). While pure cutting
plane approaches are often slower than alternate branch-and-
bound MIP solvers in practice (Dash et al. 2014), we note
that our approach only needs the cutting plane methodology
for backpropagation during training. Indeed, at test time, we
can make predictions and find optimal decisions based on
those predictions using any state-of-the-art MIP solver, ensur-
ing the running time in deployment is exactly the same were
any other training method used. Due to the computational
complexity of backpropagating through large optimization
problems, we analyze approaches that stop cut generation af-
ter a fixed number of cuts have been generated, trading off the
tightness of the differentiable solver with improved training
runtime. Finally, we compare against a decoupled learning
and optimization approach, that simply relies on training
using a relevant classification or regression loss function.

We demonstrate the effectiveness of our approach on three
different real-world MIP problem domains concerning invest-
ment portfolio optimization, bipartite matching with diversity
constraints, and energy-related knapsack, showing significant
improvements in solution quality over the baseline. We then
evaluate our method’s ability to generalize to unseen tasks
with differing problem sizes, and data distribution.

Problem description
We consider problems that combine learning with an opti-
mization problem that can be modeled as a mixed integer
program (MIP). Specifically, each instance of the problem is
a triple (φ, c,D), where φ is a feature vector, c is the objec-
tive coefficient vector of a MIP, and D represents additional
known data that plays a role in the downstream optimization.
In a MIP for a given instance, D will include the constraint
coefficients, right-hand-side constants, and set of integral
variables in each train instance A, b, I , where the constraints
encode data about individual instances and can vary from
one problem instance to another. If c were known a priori, we
could simply use branch and bound to solve the correspond-
ing MIP: minx{cTx|Ax ≤ b, ∀i ∈ I, xi ∈ Z}; however, we
consider the setting where c is unknown and must be esti-
mated from φ. We assume that we observe training instances
{(φ1, c1, D1), . . . , (φm, cm, Dm)} drawn from some distri-
bution , and we need to make decisions at test time using
only features φ and known parameters D. We will use the
training data to train a predictive model fθ (where θ denotes
the internal parameters of the model) which outputs an es-
timate fθ(φ) = ĉ on a test-time instance. Once we have
estimates ĉ, an optimal solution to the estimated problem
x∗(ĉ;A, b, I) can be obtained. The quality of this solution
with respect to the real coefficients c we observe after the fact
is then cTx∗(ĉ;A, b, I). The standard two stage approach in
this setting is to train the machine learning model fθ that min-

imizes a loss that is generally an average distance between
predicted values ĉ and ground truth values c. However, our
overall objective is to find model parameters θ which yield
predictions ĉ that directly maximize the quality of MIP so-
lution for ĉ, evaluated with respect to the (unknown) ground
truth objective c.

MIPaaL: Encoding MIP in a Neural Network
We formulate the MIP as a differentiable layer in a neural
network which takes objective coefficients ĉ as input and
outputs the optimal MIP solution. Formally, we consider the
optimal solution x∗(ĉ;A, b, I) of the MIP as a function of
the input coefficients ĉ given linear constraints on the feasible
region Ax ≤ b and the set of integral variables I . We write a
functional form of the layer as:

x∗(ĉ;A, b, I) =
argminx ĉTx
subject to Ax ≤ b

xi ∈ Z∀i ∈ I
(1)

We can perform a forward pass given input objective co-
efficients, which are potentially outputs of a neural network,
and feasibility parameters of the MIP using any solver.

Standard practice in this setting is to first train a model
fθ to predict the coefficients based on embeddings φi of
the different predicted components such that on average the
model predictions ĉ = fθ(φ) are not far away from the
ground truth objective coefficients c. Then, decisions are
made during deployment based on the predicted values by
finding the optimal solution with respect to the predicted
values x∗(ĉ;A, b, I) based on the formulation in Equation 1.

We introduce an alternative approach that incorporates
the above layer into the training pipeline, instead of only
calling the forward pass at deployment. To do so, we need
to provide method to compute the forward and backward
passes. While forward propagation in this setting is straight-
forward using standard MIP solvers, the highly nonconvex
and discrete structure of the MIP, which enable its flexibil-
ity, seem to render gradient computation untenable. Indeed,
the optimization problem (1) as written is nondifferentiable
since even infinitesimal changes to ĉ can drastically change
the optimal solution. Previous work has explored differenti-
ation through optimization, but largely for problem classes
which are significantly smoother. Amos and Kolter (2017)
show how to differentiate through convex quadratic problems,
which have only continuous variables and whose solutions
are natively differentiable. Wilder et al. (2019) build on this
work to tackle linear programs, which may have discontinu-
ous solutions (but lack integer variables), via the addition of
quadratic smoothing. However, both of these problem classes
lack the fundamental representational power of MIPs, which
are NP-hard to solve and hence often employed as a general-
purpose engine for hard computational problems (while QPs
and LPs are easily solved in polynomial time). This power
comes at a price: MIPs are fundamentally connected to dis-
crete, nonconvex structures via the integer variables I , which
do not easily admit a differentiable surrogate.

Our solution to this dilemma draws on algorithmic tech-
niques for computing a new continuous relaxation for each

individual ĉ which is much closer to the discrete problem
than if we naively relaxed the integer variables. We then use
the continuous-domain techniques developed previously to
differentiate through this relaxation during training time. In
particular, we use a pure cutting plane approach which tight-
ens the LP relaxation (at the expense of potentially generating
a large number of cutting planes along the way) (Bodur, Dash,
and Günlük 2017; Wolsey and Nemhauser 2014).

A pure cutting plane approach iteratively solves the lin-
ear programming relaxation of the current problem. If the
found solution is integral then the algorithm terminates since
the found solution is both feasible to the original MIP and
optimal for a relaxation of the original problem. Otherwise,
a cut is generated which removes the discovered fractional
solution and leaves all feasible integral solutions. Since the
individual cuts do not remove any integral solutions, the
final LP retains all integral solutions. Ideally, we would de-
scribe the convex hull of the integral solutions yielding an
exponentially large linear program equivalent to the origi-
nal MIP, thus ensuring that all potentially optimal integral
solutions lie on extreme points of the feasible region. In
practice, finding the convex hull of MIP solutions is not
just NP-Hard but often numerically intractable. Instead, we
can obtain cutting planes that tighten the feasible region via
Gomory cuts or other globally valid cuts (Gomory 1960;
Balas et al. 1996). We then consider the problem with gener-
ated cuts Sx ≤ t, and write out the following linear program:

minimizex ĉTx
subject to Ax ≤ b

Sx ≤ t
(2)

Given this continuous optimization problem, we can now find
the gradient of the optimal solution with respect to the input
parameters by differentiating through the KKT conditions,
optimality conditions for Equation 2. Differentiation through
the continuous LP is done via the quadratic smoothing ap-
proach proposed in (Wilder, Dilkina, and Tambe 2019) for
linear programs based on differentiating the KKT conditions
of a quadratic program as shown by Amos and Kolter (2017).

In our setting we can compute dx
dθ using the gradient back-

propagated to the MIP layer: d∇xf(x,θ)
dθ , along with the opti-

mal primal solution x̂, and dual solution λ, µ corresponding
to constraints Ax ≤ b and Sx ≤ t respectively. Using the
quadratic smoothing term γ‖x‖22 in the objective proposed by
Wilder et al. (2019), we can find the gradient of the solution
x with respect to the parameters θ by solving the following
system of equations for dxdθ :[

−2γ AT ST

D(λ)A D(Ax̂− b) 0
D(µ)S 0 D(Sx̂− t)

][dx
dθ
dλ
dθ
dµ
dθ

]
=

[
d∇xf(x,θ)

dθ
0
0

]
,

with D(·) being a shorthand for diag(·).

Decision-Focused Learning with MIPaaL
Having developed a differentiable layer to solve MIPs, we
can incorporate this layer into the broader pipeline of a ma-
chine learning problem in order to train end-to-end for high
test-time optimization performance. Specifically, we define

the loss function to be the solution quality of the predicted
optimal decision x∗(ĉ, A, b, I) output by the model (which
now includes the MIPaaL layer) with respect to the ground
truth objective coefficients c. In other words, we can use the
MIPaaL formulation to train the model to directly minimize
the deployment objective. We instantiate this method using a
neural network parameterized by θ where fθ predicts the ob-
jective coefficients ĉ based on embeddings φ of the decision
variables. The foward pass, shown in Equation 3, calls fθ to
predict the objective coefficients, and then uses the MIPaaL
cutting plane solver to generate the LP corresponding to the
original MIP, along with the resulting decision x∗. We then
set the loss to be the solution quality of the returned decision
with respect to the ground truth coefficients c.

ĉ := fθ(φ) (3a)
x̂ := x∗(ĉ;A, b, I) via Equation 1 (3b)

loss(ĉ, c) := cT x̂ (3c)

Since the dot product in Equation 3c and prediction of the
neural network in Equation 3a are differentiable functions of
their inputs, the parameters of the neural network predictor θ
can be trained via backpropagation using KKT conditions of
the computed surrogate LP found in Equation 2, relying on
a small quadratic regularization term for the LP proposed in
Wilder et al. (2019) to enforce strong convexity and perform
backpropagation through Equation 3b.

MIPaaL Variants
MIPaaL - k cuts: Given that the cut generation process is
time consuming and must be done for each forward pass,
we examine the tradeoff of decision quality when stopping
cut generation after the first k cuts have been generated. We
experiment with two settings (k = 100 and k = 1000) to
determine how the tightness of the cut generation process
impacts the decision quality at test time. Note that in the case
where k = 0 cuts are generated, this method is equivalent
to just using the LP relaxation of the original MIP where all
integrality constraints on decision variables are dropped.

MIPaaL-Warm: Warm starting the training process with
a pretrained network may enable MIPaaL to take advantage
of already learned representations. The predictive model
feeding into MIPaaL can be initialized with any similarly
parametrized model, as a result, we can initialize the predic-
tive input of MIPaaL with a model trained to predict objective
coefficients by minimizing a standard ML loss. The resulting
model may yield better decision quality than the initialization
and retain good predictive performance.

MIPaaL-Hybrid: We consider a hybrid loss balancing
MIP decision quality and predictive performance. The hybrid
approach is intended to simultaneously improve decision
quality and minimize a standard ML loss, like cross-entropy
or mean squared error, lossML(ĉ, c) between neural network
predictions c̃ and ground truth coefficients c. We define the
hybrid loss as a weighted sum of MIP-based loss and ML
loss cTx∗(ĉ, A,B, I) + αlossML(ĉ, c) with weight α.

Empirical Evaluation
We instantiate MIPaaL for a range of tasks which require
prediction followed by optimization with the overall goal of
improving the objective value upon deployment. Specifically,
we run experiments on combinatorial portfolio optimization,
diverse bipartite matching and knapsack instances. The port-
folio optimization setting accounts for various combinatorial
constraints enforcing small number of assets in the portfolio
and limiting rebalancing transactions to maximize the overall
predicted return of the portfolio. Diverse bipartite matching
enforces diversity in the types of recommended matches to
maximize an overall predicted utility of the suggested pair-
ing. Knapsack instances select times to sell energy given a
limit on when energy can be sold. In each setting, the predic-
tive problem is nontrivial since the features do not contain
much signal for predicting objective coefficients. However,
we demonstrate that in these settings, we can train a predic-
tive model whose outputted objective coefficients yield high-
quality decisions after optimization. Experimental details and
extended results are at https://tinyurl.com/aaai2020-mipaal.

Benchmark problems
Portfolio Optimization has been heavily studied in financial
settings. Given a set of assets to choose from and predicted
price changes for the next period, the objective is to invest
money among assets to maximize return, while limiting risk
from uncertainty. Practitioners may also want to limit overex-
posure to any single financial sector or limit order quantity
as in Bertsimas et al. (1999). In this setting, the prediction
problem of forecasting the next period’s returns is generally a
difficult learning task. To tackle this, (Bengio 1997) proposes
training a model to maximize the objective value obtained by
a convex portfolio optimization problem given by (Markowitz
1952). We approach the problem considering a MIP criterion
based on the formulation given by Bertsimas et al. (1999).

In the combined prediction and optimization problem, the
next period’s returns (i.e., the objective) are unknown and
predicted from historical prices and features from Quandl’s
WIKI and FSE datasets (Quandl 2019). We evaluate on the
SP500, a collection of the 505 largest companies representing
the American market, and the DAX, a set of 30 large German
companies. We split the data temporally, training, validating,
and testing on data from periods Jan ’05-Dec ’10, Jan ’11-
Nov ’13, and Dec ’13-Nov ’16 respectively. Details regarding
data collection are in the appendix.

Diverse Bipartite Matching: Bipartite matching is used
in many applications, where the success probability of a par-
ticular match is often estimated from data. Without additional
constraints, bipartite matching can be formulated as an LP; a
setting previously used for decision-focused learning (Wilder,
Dilkina, and Tambe 2019) since the LP relaxation gives exact
integral solutions. In practice though, matching problems are
often subject to additional constraints. For instance, finding
fair and high-quality housing allocations or kidney matching
with additional contingency plans (Benabbou et al. 2018;
Dickerson et al. 2016) require additional modeling which
make the integer problem NP-Hard.

We use the problem of bipartite matching with added
diversity constraints, which enforce a maximum and min-

imum bound on the percent of edges selected with a specified
property. We use the experimental setup of (Wilder, Dilkina,
and Tambe 2019), who did not include diversity constraints.
Specifically, the matching instances are constructed from the
CORA citation network (Sen et al. 2008) by partitioning the
graph into 27 instances on disjoint sets of nodes (split into
train, test and validation). Diversity constraints are added to
enforce that at least some percent of edges selected are be-
tween papers in the same field and some percent are between
papers in different fields.

Knapsack concerns choosing from a set of items each
with a value and a weight. The objective is to maximize the
total value of items selected, while not exceeding a budget
on total weight. We consider a setting where the item values
are not known at the time of decision-making, and must be
predicted from data. Our knapsack dataset corresponds to
unit commitment problems. In those problems we want to
plan when to sell energy at half-hour intervals over a day,
while limiting operating costs. We want to maximize the rev-
enue we get but we need to predict half-hour prices. We use
real-world energy-aware scheduling data from (Demirovic et
al. 2019) which consist of historical energy data and prices
from the ICON energy-aware scheduling competition. The
time period weights are drawn uniformly between 0 and 1,
and the budget is 10% of the total weight. In (Demirovic
et al. 2019), the authors describe and analyze an algorithm
for exhaustively searching linear models which yield good
knapsack performance; however, the results are for linear
predictive components feeding to knapsack instances, and do
not directly extend to neural network models.

Methods
MIPaaL: Following our specified methodology, we use
CPLEX’s implementation of Gomory cuts (Gomory 1960)
which we collect through the C API. Since we are only inter-
ested in the global cuts generated, we limit solving to the root
node, disable heuristics, and all cut generation procedures
other than Gomory cuts. Termination occurs when either an
integral solution is found, in which case our resulting LP
gives us the exact integral optimal solution, or when CPLEX
stops generating viable cuts (since the cut generation based
purely on Gomory cuts is not complete).

Two-Stage: We compare against the standard predict-
then-optimize approach which treats prediction and optimiza-
tion components separately. The predictive component is
trained to minimize a standard loss between predicted ob-
jective coefficients and the ground truth (e.g., mean squared
error or cross-entropy). Afterwards, we solve the MIP to
optimality using the predicted coefficients.

RootLP: Next, we compare against a decision-focused
learning approach that uses only the initial LP relaxation of
the MIP (disregarding integrality constraints), and hence can
be solved using the method proposed by (Wilder, Dilkina, and
Tambe 2019) for linear programs. While the predictive model
is trained using the LP relaxation, at test time we solve the
true MIP using the predicted objective coefficients to obtain
an integral decision. This tests the impact of our cutting plane
method, which allows us to fully account for combinatorial
constraints in MIPaaL’s gradients.

Setup: We average over 5 training and testing iterations
per problem setting with different seeds to evaluate the given
approaches. This results in 180 portfolio optimization, 55 di-
verse bipartite matching, and 95 weighted knapsack instances
to compute testing metrics. The neural network architectures
are fixed for a given problem distribution, and are selected
from grid search using MIP decision quality on the validation
set of the TwoStage model. The models are trained with Adam
(Kingma and Ba 2014) with learning rate 0.01 and l2 nor-
malization coefficient of 0.01. Details on model architectures
and evaluation setup can be found in the appendix.

Experimental Results
We evaluate the realized decision quality and predictive per-
formance on test instances. We provide 95% confidence half-
widths around the mean evaluation. Unless otherwise indi-
cated, bolded entries are unbeaten by other methods using
one-sided paired t-tests with significance level of 0.05 to in-
dicate whether we can reject the hypothesis that observed
improvement is due to random chance.

Decision quality: The decision quality of a given model’s
outputs is determined by the realized objective value of so-
lutions obtained by using the model’s predictions. A trained
ML model predicts the objective coefficients of the particular
decision problem, and we use an exact Branch-and-Bound
solver to compute an optimal solution x̂ with respect to the
predicted objective coefficients ĉ. The decision quality is the
the objective value of that solution under the ground truth
objective coefficients, cT x̂. For portfolio optimization, the de-
cision quality is the monthly rate of return so the 2.79% that
MIPaaL achieves in Table 1 means that MIPaaL increases the
portfolio value by 2.79% on average. In bipartite matching,
our goal is to maximize the number of successful matches.
In knapsack, we maximize the total value of selected items
which represents gross income from an energy schedule.

We compare MIPaaL against TwoStage and RootLP, as
well as variants of MIPaaL discussed above. Our results in
Table 1 show that MIPaaL significantly outperforms both
baselines in decision quality across all four benchmarks. As
shown in Table 1, the full MIPaaL results in more than 2x
the average return of the TwoStage or RootLP methods for
portfolio optimization and 40.3% more successful matches
for biparite matching, and 1% more gross revenue for knap-
sack instances. We note that a randomly initialized network
achieves around 501 objective value for knapsack. These
results drive home the importance of integrating the full com-
binatorial problem into training, as enabled by MIPaaL.

We find that warm starting or using a hybrid loss of deci-
sion quality and ML loss degrade performance below RootLP.
Limiting the number of cuts used in MIPaaL to 100 also re-
sults in degraded performance in three of the benchmarks,
but with 1000 cuts, the model outperforms both baselines
and is competitive with the full MIPaaL.

For the full MIPaaL due to the incompleteness of our cut-
ting plane generator, solving the resulting cutting plane LP
might not produce an integer optimal solution to the origi-
nal MIP (as is also the case with the k cut limited versions).
Hence, the LP solutions and the corresponding gradients we
obtain during the backward pass are approximate some of the

time. During the full MIPaaL training, cutting plane LPs of
training instances produce integer optimal solutions in 83%
of SP500, 94% of DAX, 65% of Matching, and 97% of Knap-
sack instances. On average, the cutting plane LP solutions
during MIPaaL training matched the 0/1 value in the integer
optimal solution for 89.20, 70.40, 88.35 and 97.13% of the
binary variables for SP500, DAX, Matching and Knapsack
respectively (See complete set of statistics in appendix). How-
ever, the decision quality improvements of MIPaaL (using
only the standard Gomory cut generation procedure) clearly
show that the training is indeed effective and results in a
final model that is better than both TwoStage as well as the
k-cut limited forms of MIPaaL. The bad decision quality
performance of MIPaaL-100 and RootLP highlights the fact
that MIPaaL needs an effective cut generating procedure
to succeed. For any given MIP domain, using a more com-
prehensive set of cutting plane generating procedures will
improve the tightness of the resulting cutting-plane LP to
the original MIP instance. In our results, we observed that
using the full MIPaaL version over the version constrained to
k = 100, 1000 always gave us an improvement in decision
quality (Table 1), while not significantly increasing training
time (See Appendix for a full set of statistics on LP integrality
and timing results across different MIPaaL variants).

ML performance: We show the predictive performance in
Table 2. For portfolio optimization and knapsack (which are
regression problems) we report mean squared error (MSE)
and correlation coefficient, while for bipartite matching (a
classification problem) we report cross-entropy and AUC.
SP500 Asset returns have mean value 0.055 and stdev 0.199,
and in DAX have mean -0.9 and stdev 3.94, so the observed
MSE are large compared to the values themselves. In knap-
sack instances, the values have mean 64 and stdev 35, with
the MSE again being very large compared to these values.

Looking at the ML metrics (Table 2), we note the ML per-
formance of the decision-focused methods varies widely. In
particular, the testing MSE for portfolio optimization is quite
high compared to the two stage approach. This mismatch
between the MSE and decision quality exemplifies the need
for training with the downstream optimization task in mind
in that even though the MIPaaL model has worse MSE than
TwoStage , it results in much higher-return decisions.

In terms of the matching problem, we see that even though
TwoStage has better cross-entropy loss at test time, as it was
trained with that specific classification loss in mind, it lacks
in AUC which both corresponds to the findings in previous
work (Wilder, Dilkina, and Tambe 2019), and indicates that
the predictions learned by MIPaaL may sometimes also be
accurate in a traditional sense.

In knapsack instances, MIPaaL gives improvement in MIP
solution quality over other approaches. In addition, the MSE
is best among optimization methods whereas the correlation
is lower than all approaches other than MIPaaL-100. We
note that the performance improvement isn’t as drastic as
for the other settings. It is possible that the constraints are
not as combinatorial as in the other domains and thus even
straightforward ML losses may still perform well in decision
quality. On the other combinatorial problems, our decision
quality improves by anywhere from 40% to 8x compared to

Table 1: Decision quality. Comparison in terms of realized optimization objective: monthly percentage increase for portfolio
optimization (SP500 and DAX), number of pairs successfully matched for Matching, and value of items for Knapsack. MIPaaL
gives 2x monthly returns on SP500 and 8x on DAX, and improves the objective by 40.3% and 1.2% for Matching and Knapsack
respectively. MIPaaL outperforms all other variants considered.

SP500 DAX Matching Knapsack

MIPaaL 2.79 ± 0.17 5.70 ± 0.68 4.80 ± 0.71 507.70 ± 0.471
MIPaaL-Warm 1.09 ± 0.18 0.68 ± 1.01 2.14 ± 0.51 499.60 ± 0.566

MIPaaL-Hybrid 1.08 ± 0.15 0.74 ± 1.10 3.21 ± 0.73 503.36 ± 0.578
MIPaaL-1000 2.60 ± 0.16 4.39 ± 0.66 3.45 ± 0.71 506.34 ± 0.662
MIPaaL-100 1.25 ± 0.14 0.35 ± 0.63 2.57 ± 0.54 505.99 ± 0.621

RootLP (Wilder et al. 2019) 1.97 ± 0.17 -1.97 ± 0.69 3.17 ± 0.60 501.58 ± 0.662
TwoStage 1.19 ± 0.15 0.70 ± 1.46 3.42 ± 0.78 501.49 ± 0.523

Table 2: ML performance on test set. TwoStage wins on ML metrics used for training (MSE, CE), whereas MIPaaL has inferior
ML metrics while improving decision quality. In all benchmarks, the predictive problem is hard as evidenced by the ML metrics
of all methods. Bolded entries have 95% confidence intervals overlapping with the best entry.

SP500 DAX Matching Knapsack
MSE Corr MSE Corr CE AUC MSE Corr

MIPaaL 0.22 ± 0.043 0.15 ± 0.015 0.13 ± 0.017 0.25 ± 0.032 0.66 ± 0.009 0.535 ± 0.004 2774 ± 97.664 0.567 ± 0.002
MIPaaL-Warm 0.11 ± 0.010 -0.01 ± 0.010 0.09 ± 0.067 0.07 ± 0.030 0.52 ± 0.003 0.509 ± 0.003 4660 ± 72.008 0.593 ± 0.003

MIPaaL-Hybrid 0.09 ± 0.030 0.13 ± 0.013 0.13 ± 0.099 0.26 ± 0.026 0.55 ± 0.002 0.502 ± 0.004 3824 ± 82.828 0.608 ± 0.006
MIPaaL-1000 0.12 ± 0.020 0.13 ± 0.013 0.35 ± 0.010 0.27 ± 0.035 0.61 ± 0.010 0.506 ± 0.007 5821 ± 154.793 0.590 ± 0.005
MIPaaL-100 0.98 ± 0.089 0.12 ± 0.013 0.99 ± 0.060 0.26 ± 0.037 0.54 ± 0.013 0.503 ± 0.004 5801 ± 145.331 0.553 ± 0.007

RootLP (Wilder et al. 2019) 0.71 ± 0.178 0.15 ± 0.013 1.06 ± 0.137 0.28 ± 0.032 0.49 ± 0.007 0.513 ± 0.001 6267 ± 212.063 0.574 ± 0.002
TwoStage 0.09 ± 0.017 0.06 ± 0.011 0.02 ± 0.066 0.13 ± 0.032 0.39 ± 0.004 0.514 ± 0.005 684 ± 15.568 0.649 ± 0.002

the baselines, emphasizing the benefit of using MIPaaL for
problems with combinatorial structure.

Runtime: Table 3 summarizes our benchmarks as well as
running time statistics for components of MIPaaL. It shows
that the four benchmarks correspond to MIP instances of vari-
ous structure, number of variables, and number of constraints.
We report the average number of added cuts per MIP instance
generated during training, the average time per epoch, and
the percentage of that time dedicated to the forward and back-
ward pass through the MIP layer in particular. The number
of added cuts in the forward pass is on the order of a few
thousands for all four problem types. SP500 and Matching
take longer per epoch than DAX and Knapsack. The table
shows that for both of these methods a big percentage of the
train time is dedicated to the backward pass through the MIP
layer rather than the forward Gomory-based solver. This is
explained by the large size of the corresponding cutting plane
LPs for which the backward pass needs to solve through the
KKT conditions. Furthermore, recent GPU-accelerated QP
solvers introduced in (Amos and Kolter 2017) would acceler-
ate the backward pass. On average, the forward pass through
MIPaaL takes 0.26, 0.10, 0.80, and 0.16 seconds for SP500,
DAX, Matching, and Knapsack instances respectively, and
1.72, 0.02, 12.42, and 0.14 seconds for the backward passes
respectively. Further timing results are in the appendix.

Transfer learning: To test generalization performance,
we evaluate MIPaaL, RootLP, and TwoStage on transfer learn-
ing tasks for portfolio optimization. In this transfer learning
setting, models are trained on 30 assets randomly drawn from
SP500 (SP-30a), with data from Jan 2005 - Dec 2010. These

learned models are then evaluated on data from Dec 2013
- Nov 2016 to test various generalization aspects. To test
generalization across the data distribution we evaluate on 1)
SP-30b, a set of 30 randomly drawn assets from the SP500,
disjoint from SP-30a, and 2) the DAX, a separate index com-
prising 30 companies from a different country. Similarly, we
evaluate on instances with a varying number of assets in SP-
50, SP-100, SP-200 and SP-500 which contain 50, 100, and
200 each with unique assets disjoint from SP-30a and SP-30b,
as well as on all 505 assets we have data for in SP-500.

Varying data distribution: The transfer learning results
(Table 4) demonstrate that MIPaaL generalizes to unseen
assets and countries. On SP-30b, MIPaaL doubles the average
rate of return over the standard TwoStage approach, and
gives a 59% improvement over RootLP. Furthermore, while
the transferred model applied to DAX doesn’t beat MIPaaL
trained on the same task (Table 1), it improves performance
over the RootLP and TwoStage trained on DAX, showing
that MIPaaL learns a useful model for portfolio optimization
as a whole. Lastly, MIPaaL’s performance improvement over
TwoStage occurs despite a much higher MSE (Table 4).

Varying problem size: MIPaaL efficiently predicts for the
general task of portfolio optimization, regardless of the set or
number of assets (Table 4). Similarly to DAX, for SP500 the
transferred MIPaaL model trained on SP-30a outperforms
the TwoStage method trained on SP500 data (Table 1).

These results indicate that MIPaaL can train predictive
models which generalize across data distribution and MIP
problem size. Comparing MIPaaL trained on SP-30a, which
gets 2.26 returns on the full SP500, to TwoStage trained on

Table 3: Problem statistics and timing results. Timing results are number of epochs until validation MIP performance convergence,
average time per epoch, and average % time taken per epoch to compute Forward and Backward passes through the MIP Layer.

Num Instances Problem Sizes Solve Statistics
Train Val Test Bin Vars Cont Vars Cons Avg Cuts Epoch (s) Forward Backward # Epochs

SP500 72 35 36 1000 3011 5026 2690 486 3.88% 25.46% 28
DAX 72 35 36 60 185 314 1387 47 15.63% 3.34% 20

Matching 16 11 11 2500 0 102 4984 604 2.13% 32.90% 35
Knapsack 56 19 19 48 0 1 1261 208 4.31% 0.36% 31

Table 4: Transfer learning metrics for models trained on SP-30a and tested varying data distribution and problem size.

SP-30b DAX SP-50 SP-100 SP-200 SP500

Decision Quality
MIPaaL 2.02 ± 0.48 2.77 ± 0.40 1.93 ± 0.13 2.27 ± 0.11 2.17 ± 0.48 2.26 ± 0.37
RootLP 1.81 ± 0.44 1.74 ± 0.43 1.50 ± 0.09 1.58 ± 0.08 1.82 ± 0.41 1.90 ± 0.29

TwoStage 0.71 ± 0.04 0.82 ± 0.54 1.58 ± 0.13 1.22 ± 0.09 1.50 ± 0.58 1.11 ± 0.35

ML Loss
MIPaaL 4.81 ± 8.59 4.59 ± 8.80 5.42 ± 3.16 5.42 ± 2.37 5.25 ± 1.83 5.43 ± 1.67
RootLP 5.14 ± 1.02 5.39 ± 1.04 4.73 ± 3.17 4.88 ± 2.58 4.81 ± 1.91 4.83 ± 1.56

TwoStage 0.08 ± 0.05 0.07 ± 0.03 0.08 ± 0.02 0.07 ± 0.01 0.08 ± 0.01 0.08 ± 0.01

SP500, which gets 1.19 return in Table 1, we can see that MI-
PaaL outperforms TwoStage even when MIPaaL doesn’t see
most assets in the dataset. Additionally, MIPaaL trained on
choosing from 30 assets has more than an order of magnitude
decrease in training time compared to training on 500 assets.
In effect, when training time is limited, we can still efficiently
train a model on small MIP instances which performs well on
larger MIP instances compared to TwoStage, while training
faster than MIPaaL on fully-sized MIPs.

Related Work
The interaction of machine learning and optimization has
provided a diverse set of tools for efficiently solving a wide
variety of problems. Recent work has framed traditionally
heuristic components of optimization algorithms as machine
learning tasks such as learning in branch and bound for MIPs
(Khalil et al. 2016; 2017b; He, Daume III, and Eisner 2014;
Bengio, Lodi, and Prouvost 2018). These approaches work
inside an exact solver when the MIP is completely speci-
fied. Deep reinforcement learning methods have also been
used to generate high-quality data-driven solutions to hard
problems such as graph optimization (Khalil et al. 2017a),
vehicle routing (Kool, van Hoof, and Welling 2019; Nazari
et al. 2018), and realtime patrol planning in security games
(Yu et al. 2019). These problems require known features, like
the true objective coefficients, and are used to quickly gen-
erate high-quality solutions with known objectives, which is
computationally intractable for an exact solver.

Several approaches have been proposed which embed op-
timization components in neural networks. This includes
specific problems such as Markowitz portfolio optimization
(Bengio 1997) or finding physically feasible state transi-
tions (de Avila Belbute-Peres et al. 2018), as well as larger
classes which exhibit properties like convexity or submod-
ularity. Problem classes used in end-to-end training include
polynomial-time solvable frameworks like quadratic pro-

grams (Amos and Kolter 2017) and linear programs (Wilder,
Dilkina, and Tambe 2019), as well as zero-sum games (Ling,
Fang, and Kolter 2018). In addition, a solution is proposed
for problems encoded as submodular optimization problems
in (Wilder, Dilkina, and Tambe 2019). In (Elmachtoub and
Grigas 2017), the authors optimize a decision-focused re-
gret bound. (Kao, Roy, and Yan 2009) instantiate end-to-
end learning with linear models predicting components of a
quadratic optimization function, and (Demirovic et al. 2019)
exhaustively search linear models to perform well on predict
+ optimize for knapsack. Lastly, (Wang et al. 2019) incorpo-
rate a differentiable semidefinite program as a relaxation for
MAXSAT. To our knowledge, MIPaaL is the first approach
for imbuing neural networks with the highly flexible Mixed
Integer Program, a widely-used class of potentially inap-
proximable NP-Hard optimization problems, while providing
tight feedback on decision quality.

Conclusion
We propose MIPaaL, a principled method for incorporating
mixed integer programs as a differentiable layer in neural net-
works. We approach the task of differentiating through this
flexible, discrete, and potentially inapproximable problem
by algorithmically generating a potentially large but equiv-
alent continuous optimization problem via cutting planes.
We instantiate our proposed approach for decision-focused
learning wherein a predictive model is trained with a loss
function that directly corresponds to the quality of the deci-
sions made based on the predictions. MIPaaL is evaluated
on two settings of portfolio optimization, one setting of di-
verse bipartite matching, and a knapsack setting, all of which
contain modeling techniques widely used in combinatorial
optimization that make the problem more complex but more
realistic. Furthermore, we evaluate MIPaaL in several transfer
learning settings. We demonstrate empirically that MIPaaL is
able to outperform the standard approach of decoupling the

prediction and decision components, as well as an approach
of using a continuous relaxation of the original combinato-
rial optimization problem. To better understand the impact
of the cutting plane technique, we explore hybrid strategies
that stop the cutting plane generation early, simultaneously
optimize ML loss and MIP loss, and initialize the network
feeding into MIPaaL with a model trained via the decoupled
approach. Ultimately, we find empirically that our approach
can give high-quality solutions in the investigated settings.

Acknowledgements
This work was supported by the Army Research Office
(MURI W911NF1810208). Ferber is supported by NSF
award #1914522. Wilder is supported by a NSF Graduate
Research Fellowship. Dilkina is supported partially by NSF
award #1914522 and by U.S. Department of Homeland Se-
curity under Grant Award No. 2015-ST-061-CIRC01. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied,
of the U.S Department of Homeland Security.

References
Amos, B., and Kolter, J. Z. 2017. Optnet: Differentiable optimiza-
tion as a layer in neural networks. In ICML.
Balas, E.; Ceria, S.; Cornuéjols, G.; and Natraj, N. 1996. Gomory
cuts revisited. Operations Research Letters 19(1).
Benabbou, N.; Chakraborty, M.; Ho, X.-V.; Sliwinski, J.; and Zick,
Y. 2018. Diversity constraints in public housing allocation. In
AAMAS, 973–981.
Bengio, Y.; Lodi, A.; and Prouvost, A. 2018. Machine learning for
combinatorial optimization: a methodological tour d’horizon. arXiv
preprint arXiv:1811.06128.
Bengio, Y. 1997. Using a financial training criterion rather than a
prediction criterion. Intl Journal of Neural Systems 8(04):433–443.
Bertsimas, D.; Darnell, C.; and Soucy, R. 1999. Portfolio construc-
tion through mixed-integer programming at grantham, mayo, van
otterloo and company. Interfaces 29(1):49–66.
Bodur, M.; Dash, S.; and Günlük, O. 2017. Cutting planes from
extended lp formulations. Math. Programming 161(1-2):159–192.
Chan, C. W.; Farias, V. F.; Bambos, N.; and Escobar, G. J. 2012.
Optimizing intensive care unit discharge decisions with patient
readmissions. Operations research 60(6):1323–1341.
Dash, S.; Dobbs, N. B.; Günlük, O.; Nowicki, T. J.; and Świrszcz,
G. M. 2014. Lattice-free sets, multi-branch split disjunctions, and
mixed-integer programming. Math. Programming 145(1):483–508.
de Avila Belbute-Peres, F.; Smith, K.; Allen, K.; Tenenbaum, J.; and
Kolter, J. Z. 2018. End-to-end differentiable physics for learning
and control. In NeurIPS, 7178–7189.
Demirovic, E.; Stuckey, P. J.; Bailey, J.; Chan, J.; Leckie, C.; Ra-
mamohanarao, K.; and Guns, T. 2019. Predict+optimise with
ranking objectives: Exhaustively learning linear functions. In IJ-
CAI.
Dickerson, J. P.; Manlove, D. F.; Plaut, B.; Sandholm, T.; and Trim-
ble, J. 2016. Position-indexed formulations for kidney exchange.
In ACM Conference on Economics and Computation, 25–42.
Elmachtoub, A. N., and Grigas, P. 2017. Smart" predict, then
optimize". arXiv preprint arXiv:1710.08005.

Gomory, R. 1960. An algorithm for the mixed integer problem.
Technical report, RAND CORP.
He, H.; Daume III, H.; and Eisner, J. M. 2014. Learning to search
in branch and bound algorithms. In NeurIPS.
Kao, Y.; Roy, B. V.; and Yan, X. 2009. Directed regression. In
NeurIPS. Curran Associates, Inc. 889–897.
Karush, W. 1939. Minima of functions of several variables with
inequalities as side constraints. M. Sc. Dissertation. Dept. of Mathe-
matics, Univ. of Chicago.
Khalil, E. B.; Le Bodic, P.; Song, L.; Nemhauser, G.; and Dilkina, B.
2016. Learning to branch in mixed integer programming. In AAAI.
Khalil, E.; Dai, H.; Zhang, Y.; Dilkina, B.; and Song, L. 2017a.
Learning combinatorial optimization algorithms over graphs. In
NeurIPS, 6348–6358.
Khalil, E. B.; Dilkina, B.; Nemhauser, G. L.; Ahmed, S.; and Shao,
Y. 2017b. Learning to run heuristics in tree search. In IJCAI.
Kingma, D. P., and Ba, J. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.
Kool, W.; van Hoof, H.; and Welling, M. 2019. Attention, learn to
solve routing problems! In ICLR.
Ling, C. K.; Fang, F.; and Kolter, J. Z. 2018. What game are we
playing? end-to-end learning in normal and extensive form games.
IJCAI.
Markowitz, H. 1952. Portfolio selection. The journal of finance.
Mohsenian-Rad, A.-H., and Leon-Garcia, A. 2010. Optimal res-
idential load control with price prediction in real-time electricity
pricing environments. IEEE Trans. Smart Grid 1(2):120–133.
Nazari, M.; Oroojlooy, A.; Snyder, L.; and Takác, M. 2018. Re-
inforcement learning for solving the vehicle routing problem. In
NeurIPS, 9839–9849.
Nemhauser, G. L. 2013. Integer programming: The global impact.
ISyE DOS Optimization Seminar presentation at Georgia Tech
http://hdl.handle.net/1853/49829.
O’Mahony, E., and Shmoys, D. B. 2015. Data analysis and opti-
mization for (citi) bike sharing. In AAAI.
Quandl. 2019. Various end-of-day data. https://www.quandl.com/.
Sato, K.; Kato, Y.; Hamada, M.; Akutsu, T.; and Asai, K. 2011.
Ipknot: fast and accurate prediction of rna secondary structures with
pseudoknots using integer programming. Bioinformatics.
Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.; and
Eliassi-Rad, T. 2008. Collective classification in network data. AI
magazine 29(3):93–93.
Trilling, L.; Guinet, A.; and Le Magny, D. 2006. Nurse schedul-
ing using integer linear programming and constraint programming.
IFAC Proceedings Volumes 39(3):671–676.
Wang, P.-W.; Donti, P.; Wilder, B.; and Kolter, Z. 2019. Satnet:
Bridging deep learning and logical reasoning using a differentiable
satisfiability solver. In ICML, 6545–6554.
Warner, D. M. 1976. Scheduling nursing personnel according to
nursing preference: A mathematical programming approach. Oper-
ations Research 24(5):842–856.
Wilder, B.; Dilkina, B.; and Tambe, M. 2019. Melding the data-
decisions pipeline: Decision-focused learning for combinatorial
optimization. In AAAI.
Wolsey, L. A., and Nemhauser, G. L. 2014. Integer and combinato-
rial optimization. John Wiley & Sons.
Yu, L.; Wu, Y.; Singh, R.; Joppa, L.; and Fang, F. 2019. Deep rein-
forcement learning for green security game with online information.
In AAAI.

