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ABSTRACT
We study a natural model of coordinated social ad campaigns over

a social network, based on models of Datta et al. and Aslay et al.

Multiple advertisers are willing to pay the host — up to a known

budget — per user exposure, whether that exposure is sponsored

or organic (i.e., shared by a friend). Campaigns are seeded with

sponsored ads to some users, but no network user must be exposed

to too many sponsored ads. As a result, while ad campaigns pro-

ceed independently over the network, they need to be carefully

coordinated with respect to their seed sets.

We study the objective of maximizing the network’s total ad

revenue. Our main result is to show that under a broad class of

social influence models, the problem can be reduced to maximizing

a submodular function subject to two matroid constraints; it can

therefore be approximated within a factor essentially
1

2
in poly-

nomial time. When there is no bound on the individual seed set

sizes of advertisers, the constraints correspond only to a single

matroid, and the guarantee can be improved to 1− 1/e; in that case,

a factor
1

2
is achieved by a practical greedy algorithm. The 1 − 1/e

approximation algorithm for the matroid-constrained problem is

far from practical; however, we show that specifically under the

Independent Cascade model, LP rounding and Reverse Reachability

techniques can be combined to obtain a 1 − 1/e approximation

algorithm which scales to several tens of thousands of nodes.

Our theoretical results are complemented by experiments evalu-

ating the extent to which the coordination of multiple ad campaigns

inhibits the revenue obtained from each individual campaign, as a

function of the similarity of the influence networks and the strength

of ties in the network. Our experiments suggest that as networks

for different advertisers become less similar, the harmful effect of

competition decreases. With respect to tie strengths, we show that

the most harm is done in an intermediate range.
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1 INTRODUCTION
Advertising is the most important and successful business model

among social network sites. It is widely believed that the adoption

of products has a significant social component to it, wherein people

recommend products to each other, seek each other’s opinion on

products, or simply see others use a product. Under advertising

campaigns on social networks, users are shown some ads embedded

in their newsfeed from friends; the advertisers’ hope is that the

users will voluntarily share the ads, or adopt the product and be

observed by their friends using it.

While models and algorithms for viral marketing have a long

history of study (e.g., [11, 15, 16, 18, 20], and [7] for a survey), the

focus in all of these works (and a much larger body of literature)

has been on campaigns to maximize the reach of a single product.

When multiple products have been considered, it has typically been

in the context of competition, wherein each member of the network

adopts at most one product (e.g., [12, 17, 19]); though see [26] for a

model wherein products may exhibit complementarities.

Another very important way in which multiple products’ adver-

tising campaigns interact was articulated in two works by Datta,

Majumder, and Shrivastava [10] and by Aslay, Lu, Bonchi, Goyal,

and Lakshmanan [3]. Both groups of authors observe that mar-

keting campaigns interact in that they involve displaying ads to

the same set of users in a social network, and users should not be

shown too many ads, lest they feel too inundated with ads and

leave the social network [25].
1

More precisely, both sets of authors assume (explicitly or im-

plicitly) that product exposure comes in two forms: sponsored or

user-shared. When a user’s friend willingly shares an ad, or the

user observes a friend using a product, this is perceived as genuine

content. On the other hand, a sponsored ad shown by the network

itself is viewed as advertising. Both Datta et al. [10] and Aslay et

al. [3] thus impose a constraint on the number of sponsored ads that

a user can be shown: the number of sponsored ads shown to node

v must not exceed a given bound rv . While only sponsored ads are

deemed “annoying,” advertisers do profit equally from sponsored or

user-shared exposure. Imposing tight constraints on the number of

sponsored ads across ad campaigns, and solving the corresponding

optimization problem, should thus reduce the exposure of users to

annoying sponsored ads. If the coordinated optimization problem

1
According to the 2012 Digital Advertising Attitudes Report [32], users may even

exhibit negative responses towards products if they receive too many advertisements.
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is solved well, then this reduction might be achieved without much

reduction in network profit.
2

Both Datta et al. and Aslay et al. study the network’s (here also

called host) goal of maximizing its own payoff (also called revenue),
by carefully coordinating the ad campaigns of multiple advertisers.

In both models, the revenue that can be obtained from an adver-

tiser j is constrained by the advertiser’s “budget.” In the model of

Datta et al., the advertiser pays the host for each user exposure

(sponsored or user-shared); however, the number of sponsored ads

for advertiser j is bounded by some number K (j)
. In the standard

language of influence maximization (precise definitions are given

in Section 2), this translates to constraints on the seed set sizes of
each advertiser. In contrast, Aslay et al. assume that the advertiser’s

budget constrains the total payment for exposures; if an advertiser

with budget B(j) receives N exposures and is willing to pay γ (j) per

exposure, the network’s revenue is min(B(j),γ (j) · N ).

The advertisers’ hard budget constraints in the model of Aslay

et al. raise an interesting question: what happens if γ (j) · N > B(j),
i.e., an advertising cascade reaches more network users than the ad-

vertiser is willing to pay for? Aslay et al. [3] posit that the network

views this negatively, and incurs a regret over giving the adver-

tiser free exposure.
3
In their model, the network obtains regret

for undershooting the budget as well, this time over lost potential

revenue. Their goal is then to minimize the total regret. Because

the regret is 0 only when the network exactly hits the advertis-

ers’ budgets, a straightforward reduction from Partition style

problems shows not only NP-hardness, but also hardness of any

multiplicative approximation.

In this article, we depart from the regret objective of Aslay et al.

In particular, we do not believe that a network incurs regret from

accidentally giving advertisers free exposure. Such regret may well

be a psychological reality for humans, but it appears less applicable

at the level of a major company. In fact, an equally strong case could

be made that giving advertisers free exposure is beneficial, in that

it makes the advertisers more likely to run future ad campaigns

on the site, which in turn may lead to an increase, not decrease,

in future revenue. Once a regret for overshooting the advertiser’s

budget is not a concern any more, a much more natural objective

is to maximize the network’s total revenue. (A precise definition of

the model is given in Section 2.)

Our main result — in Section 3 — is a general treatment of opti-

mization in this model, subsuming both versions of budgets. We

consider very general influence models (potentially different for

each advertiser), and only require that the local influence function

at every node v for every individual advertiser j is monotone sub-

modular
4
. Under these assumptions, we show that the network’s

revenue can be approximated to within constant factors. More

specifically, when there are no constraints on individual advertis-

ers’ seed set sizes (only budget constraints limiting the total number

2
Whether users should be shown ads at all on social networks is an ethical and nor-

mative question beyond the scope of our work. We take no position on whether social

networking platforms should be considered public utilities, financed by subscription

fees, or by ad revenue. Our goal here is to limit users’ exposure to sponsored ads while

still providing high coverage to individual advertisers in the currently practiced model.

3
A possible justification is that if this happens repeatedly, advertisers may learn to

lower their declared budget and pay less.

4
Recall that a set function f is submodular iff f (S ∪ {x })− f (S ) ≥ f (T ∪ {x })− f (T )
whenever S ⊆ T .

of exposures the advertiser is willing to pay for), then there is a

polynomial-time (1 − 1/e)-approximation algorithm, and a simple

greedy algorithm achieves a
1

2
-approximation. When in addition,

there are constraints on the seed set sizes of individual advertisers,

we obtain a
1

2+ϵ approximation, for every ϵ > 0.

We show these results by expressing the optimization problem

as a monotone submodular maximization problem over suitably

chosen matroid domains, much in the style of Vondrák et al.’s result

on welfare-maximizing partitions [5, 33]. When there are no con-

straints on individual seed set sizes, this allows us to bring to bear

on the problem Vondrák’s polynomial-time (1−1/e)-approximation

algorithm for maximizing a submodular function subject to a ma-

troid constraint [5, 33] (see also subsequent work [6, 28, 34]), and

the much simpler
1

2
-approximation algorithm due to Fischer et

al. [13] (see also [24]). When there are additional constraints on

individual seed set sizes, the feasible ad campaigns can be expressed

as the intersection of two matroids, and the algorithm of Lee et

al. [23] gives a
1

2+ϵ approximation.

While we do not develop new algorithms or heuristics in this

part of our work, we consider it an important contribution to ex-

plicitly reduce from advertiser competition constraints to the in-

tersections of matroids. Such a characterization was missing from

prior work, resulting in heuristics with weaker guarantees and red-

eriving known arguments. Our work provides a clean optimization

framework that allows the incorporation of different constraints

in the future, and the application of known powerful optimization

techniques and guarantees.

While Vondrák’s beautiful (1−1/e)-approximation algorithm for

maximizing a submodular function under a matroid constraint [33]

runs in polynomial time, it is not practical.
5
With this concern in

mind, in Section 4, we develop a (1− 1/e)-approximation algorithm

which scales to moderately sized networks comprising several tens

of thousands of nodes, that are often encountered in area-aware

advertising [1, 2] or intervention programs [36]. Unlike our main

results, this algorithm is not fully general, providing guarantees

only for the Independent Cascade (IC) Model, and satisfying the

budget constraint only in expectation, rather than for each solution.

The reason that the algorithm only works for the IC model

is that it is based on randomly sampling Reverse Reachable (RR)

sets [4, 30, 31]. These RR sets are then used to define and solve a

generalized Maximum Coverage LP, which is then rounded using

techniques of Gandhi et al. [14]. An additional important benefit

of the algorithm is that the fractional LP which it rounds provides

an upper bound on the performance of the optimum solution. This

upper bound is useful in our experimental evaluation, not only of

the LP rounding algorithm, but of other algorithms as well.

In Section 5, we describe experiments to evaluate the effects of

competition and tie strengths on coordinated advertising campaigns.

A comparison of algorithms shows that while the greedy algorithm

has a worse worst-case approximation guarantee than LP rounding,

it performs (marginally) better in experiments; both algorithms

beat several natural heuristics, and get within 85% of the LP-based

upper bound on the optimum; this is significantly better than their

worst-case guarantees. We also develop a parallel version of the

5
The running time is roughlyO (n8), with large constants. To the best of our knowledge,

the full algorithm has never been implemented, but we would be surprised if it scaled

to more than 10 nodes.



Greedy algorithm that accelerates overall processing by a factor

of 12 on a 36-core machine. This allows us to scale to graphs with

millions of nodes and dozens of advertisers.

Our main interest in the experimental evaluation is the effect of

competition between products, and the interaction between com-

petition and tie strengths in the network. Our experiments show

that the more similar the advertisers’ influence networks, the more

the host’s payoff decreases compared to the sum of what could be

extracted from the advertisers in isolation. This effect is exacerbated

when the network has a small number of highly influential nodes,

since each advertiser will only be able to target few of these nodes.

When nodes’ influence is more even across the network, the host

loses less revenue, because there are enough different “parts” of the

network to extract revenue from all advertisers. When ties are very

weak or very strong, the effect of competition is again attenuated,

while for intermediate tie strengths, competition can lead to a signif-

icant revenue loss compared to treating each advertiser separately.

2 PROBLEM STATEMENT
There arem advertisers j = 1, . . . ,m aiming to advertise on a net-

work of n nodes/people V = {1, . . . ,n}. We will use u and v (and

their variants) to denote nodes, and j (and variants) for advertisers.

Product information (or ads or influence) propagates through

the social network according to the general threshold model [20, 27],
defined as follows: For each node v and advertiser j, there is a

monotone and submodular local influence function f
(j)
v : V → [0, 1]

with f
(j)
v (∅) = 0. Each node v independently chooses thresholds

θ
(j)
v ∈ [0, 1] uniformly at random for each product j . Let A

(j)
t be the

set of nodes that have shared ad j by round t . (We call such nodes

active for ad j.) Node v becomes active for ad j in round t + 1 iff

f
(j)
v (A

(j)
t ) ≥ θ

(j)
v . The (random) process is seeded with seed sets A(j)

0

(subject to constraints discussed below). It quiesces when no new

activations occur in a single round. At that point, for each ad j , a final

(random) set Â(j)
has become active. The general threshold model

subsumes most standard models of influence spread, including the

Independent Cascade and Linear Threshold models. Notice that (1)

the diffusions for different j proceed independently, except for joint
constraints on the seed sets (discussed below), and (2) different ads

can in principle follow different diffusion models.

Each advertiser j has a non-negative and monotone value func-

tionw(j)
giving the payment that j will make to the host as a func-

tion of the active nodes in the end. In full generality, this function

could depend on the (random) set Â(j)
of nodes that are active for j

in the end; in this case, we will assume thatw(j)
is also submodular.

In most cases, however, all nodes in the network will have the same

value to an advertiser, in which casew(j)
will only depend on the

cardinality |Â(j) |. In this case, we will assume thatw(j)
is (weakly)

concave; notice that this is a special case of the previous one, be-

cause viewed as a function of Â(j)
(rather than |Â(j) |), the function

w(j)
is submodular. For notational convenience, and in keeping

with much of the prior literature, we write σ (j)(A
(j)
0
) = |Â(j) | for

the (random) number of nodes that are active in the end when the

process starts with the node set A
(j)
0
.

A particularly natural case — closest to the definition of Aslay

et al. [3] — is whenw(j)(X ) = min(B(j),γ (j) · |X |). Here, B(j) is the

advertiser’s budget, while γ (j) is the amount paid per exposure.

The network’s goal is to choose seed sets A
(j)
0

for all advertisers j,
subject to additional constraints discussed below, so as to maximize

one of the following two global revenue functions:

W (A
(1)

0
,A

(2)

0
, . . . ,A

(m)

0
) =

m∑
j=1

E
[
w(j)(σ (j)(A

(j)
0
))

]
, (1)

W̄ (A
(1)

0
,A

(2)

0
, . . . ,A

(m)

0
) =

m∑
j=1

w(j)(E
[
σ (j)(A

(j)
0
)

]
). (2)

Notice the subtle difference between the two definitions: W
captures the expected revenue from advertisers who are charged

for each campaign individually, according to their functionsw(j)
.

The objectiveW extends straightforwardly to the case wherew(j)

depends not only on the cardinality of Â(j)
, but on the specific

set. In contrast, W̄ corresponds to the case in which advertisers

are charged according to the expected exposure. An essentially

equivalent way of expressing the same objective (up to random

noise) is that the revenue is based on the average exposure for

advertiser j over a large number of campaigns.

Specifically in the context of the linear revenue function with

a cap of the budget B(j), this means that underW , advertiser j is

never charged more than B(j) for any individual campaign, while

under W̄ , advertiser j’s budget is not exceeded on average over

multiple campaigns.

The main constraint, common to both the models of Aslay et

al. and Datta et al., is that each node can be exposed to only a limited

number of sponsored ads. We interpret this as saying that for node

v , there is an upper bound rv on the number of seed sets it can be

contained in, i.e., |{j | v ∈ A
(j)
0
}| ≤ rv .

6

In addition to the node exposure constraints rv , following the

model of Datta et al., we also allow for constraints on the seed set

sizes of each advertiser: for each advertiser j, the number of seed

nodes |A
(j)
0
| cannot exceed K (j)

. In addition, we can constrain the

total number of sponsored ads (more tightly):

∑
j |A

(j)
0
| ≤ K . In

summary, our target optimization problem is the following:

Definition 2.1 (Multi-Product Influence Maximization). For each
advertiser j, choose a seed set A

(j)
0

with |A
(j)
0
| ≤ K (j)

, such that

|{j | v ∈ A
(j)
0
}| ≤ rv . Subject to these constraints, maximize

W (A
(1)

0
,A

(2)

0
, . . . ,A

(m)

0
) or W̄ (A

(1)

0
,A

(2)

0
, . . . ,A

(m)

0
).

TheMulti-Product InfluenceMaximization problem is clearly NP-

hard, as it subsumes the standard influence maximization problem.

3 A GENERAL RESULT
We begin with a very general treatment. Under the assumptions

we make (the w(j)
are submodular functions of Â(j)

, or concave

functions of |Â(j) |), the overall objective functionsW and W̄ are

both submodular. In the case ofW , this is because a non-negative

6
This model in fact subsumes one in which each sponsored ad exposure only activates

v with some probability p(j )v : add a new ad node v ′
with activation function f (j )v′ ≡ 0,

and set
ˆf (j )v (S ∪ {v ′ }) = 1− (1−p(j )v )(1− f (j )v (S )). Then set rv = 0, so only the new

“ad nodes” can be targeted.



linear combination of submodular functions (in particular: a convex

combination of submodular functions) is submodular. In the case of

W̄ , the reason is that |Â(j) | is a monotone submodular function of

Â(j)
, and applying a monotone concave function preserves submod-

ularity. In both cases, we can therefore apply the result of Mossel

and Roch [27], which guarantees submodularity of the objective

for each advertiser, as a function of the seed set.

To deal with the constraints on node exposures and seed set sizes,

we use a technique discussed in [5, 33] in the context of finding

welfare-maximizing assignments of items to individuals.We create a

disjoint union of separate networks (each with the original n nodes)

for each advertiser j = 1, . . . ,m, and then consider joint constraints

on seed sets that can be selected across all of the separate networks.

The overall new network
ˆG has nm nodes, one node uv , j for each

combination of an original node v and advertiser j. Let U (j) =

{uv , j | v ∈ V } denote the set of new nodes for advertiser j, Xv :=

{uv , j | j = 1, . . . ,m} the set of new nodes corresponding to the

nodev , andU =
⋃
j U

(j) =
⋃
v Xv . The influence function for node

uv , j is fuv , j (S) := f
(j)
v ({v ′ | uv ′, j ∈ S}), and thus only depends on

the nodes in the network for advertiser j . Writing Â ⊆ U for the (ran-

dom) final set of active nodes in
ˆG, the objective function isW (A0) =∑

j w
(j)(|{v | uv , j ∈ Â}|), which is submodular by construction.

Targeting the node uv , j in ˆG corresponds to exposing node v
to ad j in the original problem. In this way, the problem is simply

to choose a subset S ⊆ U . The correspondence between seed sets

of
ˆG and ad seeding choices in the original problem is that A

(j)
0
=

{v | uv , j ∈ A0}. The constraints on the selection of A0 are then

that |{j | uv , j ∈ A0}| ≤ rv , |A
(j)
0
| ≤ K (j)

(as well as |A0 | ≤ K ).

Because the setsU (j)
form a disjoint partition ofU , the restriction

that at most K (j)
nodes fromU (j)

may be selected defines a parti-

tion matroid.
7
Similarly, because the sets Xv form a partition, the

constraint that at most rv nodes from Xv may be selected defines

a different partition matroid. The constraint on the total number of

selected nodes can be added to either of these partition matroids,

turning it into a truncated partition matroid. Thus, the constraints

on A0 form the intersection of two matroids, and the goal of the

optimization problem on
ˆG is to select a setA0, subject to these two

matroid constraints, so as to maximize a non-negative, monotone,

submodular function. The latter is a well-studied problem. The key

results for our purposes are the following:

Theorem 3.1 (Theorem 3.1 of [23]). There is a simple local search
algorithm for maximizing a non-negative non-decreasing submodular
function subject to k ≥ 2 matroid constraints. For any ϵ > 0, the al-
gorithm (with suitable termination condition) provides a polynomial-
time 1

k+ϵ -approximation.

Theorem 3.2 ([13]). The greedy algorithm, which always adds the
next element maximizing the increase in the objective function (subject
to not violating the matroid constraint), is a 1

k+1
approximation

algorithm for maximizing a non-negative non-decreasing submodular
function subject to k matroid constraints.

Datta et al. prove an approximation guarantee of 1/3 for a greedy

hill climbing algorithm; as discussed above, they do not consider

7
Readers unfamiliar with the standard definitions of matroids and (truncated) partition

matroids are directed to [29].

budget constraints on the total number of exposures. Furthermore,

they consider only the special case when all advertisers have the

same influence functions at all nodes. Their proof shows that the

constraints form a p-system for p = 2 (a generalization of the inter-

section of two matroids); they then invoke an analysis of Calinescu

et al. [5] for such systems. The same result can be obtained by

appealing to Theorem 3.2 instead. By making the connection to

the intersection of matroids explicit
8
and invoking Theorem 3.1

instead, we improve the approximation guarantee for this problem

to essentially
1

2
, under a much more general problem setting.

9

The model of Aslay et al. does not impose constraints on the seed

set sizes of individual advertisers. The remaining node exposure

constraints and the overall seed set size constraint form a single
truncated partition matroid (as opposed to the intersection of two
matroids). If we do not consider the penalty of overshooting adver-

tisers’ budgets, the resulting payoff function is non-decreasing sub-

modular; therefore, the approximation guarantee can be improved

to (1 − 1/e) by appealing to the following theorem of Vondrák et al.

Theorem 3.3 ([5, 33]). The continuous-greedy algorithm of [5, 33]
is a polynomial-time (1 − 1/e − ϵ)-approximation for maximizing a
non-negative monotone submodular function subject to any matroid
constraint, for arbitrarily small ϵ > 0.

While the continuous-greedy algorithm runs in polynomial time,

it is not practical. Notice, however, that Theorem 3.2 with k = 1

implies that the greedy algorithm is a
1

2
-approximation for the

problem of maximizing the network’s expected revenue from coor-

dinated multi-advertiser campaigns, subject to budget constraints

or more general concave advertiser value functions.

The main message of this section is that, when focusing on the

arguably more natural objective of maximizing the network’s rev-

enue (rather than minimizing regret), non-trivial (and in some cases

well-established) algorithmic techniques can be leveraged to obtain

algorithms with approximation guarantees essentially matching

those of standard influence maximization. These guarantees apply

in a wide variety of influence models (allowing for completely dif-

ferent influence functions for different advertisers), and under a

variety of constraints about the seed sets for different advertisers.

In fact, by leveraging subsequent work on submodular maximiza-

tion under multiple Knapsack and matroid constraints (see, e.g.,

[6, 23, 28, 34]), one can also obtain (somewhat weaker) approxima-

tion guarantees when different seed nodes have different costs (in

terms of money or effort) for targeting.

4 AN LP-ROUNDING ALGORITHM FOR THE
INDEPENDENT CASCADE MODEL

In this section, we focus on the special case of the Independent

Cascade (IC) Model for influence [15, 16, 20] in a network, and a

budgeted linear valuation function: the payoff the host receives

from advertiser j is w(j)(Â(j)) = min(B(j),γ (j) · |Â(j) |). In talking

8
Datta et al. also discuss matroids, though mostly to remark that the constraints do

not form a matroid, and thus to motivate an analysis in terms of p-systems.

9
It should be noted that the analysis of Datta et al. is not really specific to the model

they formulate, and could easily be extended to the general problem statement from

Section 2. Thus, our contribution here is not so much technical as conceptual, explicitly

formulating the general problem statement, and identifying the properties that are

really required to obtain the desired guarantees.



about the model, we use p
(j)
e to denote the probability that an edge

e = (u,v) activates node v for product j when node u has become

active for product j.
We use the idea of Reverse Reachability sets [4, 30, 31] to reduce

the multi-advertiser campaign coordination problem to a general-

ized Maximum Coverage problem; we then show how to round the

LP, using an algorithm of Gandhi et al. [14], to obtain a polynomial-

time and reasonably practical (1 − 1/e)-approximation algorithm

for the problem with both node and advertiser constraints.

This approximation guarantee gives an improvement over the

1

2
-approximation guarantee of the local search algorithm (Theo-

rem 3.1). When the seed set sizes of individual advertisers are not

restricted, the continuous greedy algorithm of Theorem 3.3 matches

the LP rounding algorithm’s (1 − 1/e) guarantee, but the continu-

ous greedy algorithm is completely impractical. The LP rounding

algorithm is less efficient than the simple greedy algorithm from

Theorem 3.2, but provides better approximation guarantees.

The downside, compared to the more general treatment in Sec-

tion 3, is that the results only hold for the IC Model, and the budget

constraints on the number of exposures will only be satisfied in

expectation: in any one run, the algorithmmay charge an advertiser

j (significantly) more than B(j).

4.1 The Reverse Reachability Technique
A very useful alternative view of the Independent Cascade Model

was first shown in [20], and heavily used in subsequent work:

generate graphsG(j)
by including each edge e inG(j)

independently

with probability p
(j)
e . Then, the distribution of nodes activated by

ad j in the end, when starting from the set A
(j)
0
, is the same as the

distribution of nodes reachable from A
(j)
0

in the random graphG(j)
.

This alternative view forms the basis of the Reverse Reachabil-

ity Set Technique, first proposed and analyzed by Borgs, Brautbar,

Chayes, and Lucier [4], and further refined by Tang, Xiao, and Shi

[30, 31]. The primary goal of [4, 30, 31] was to permit a more effi-

cient evaluation of the objective σ (A0). Under both the Independent

Cascade and Linear Threshold Models, evaluating σ (A0) is known

to be #P-complete [9, 35]. Reverse Reachability sets permit a more

efficient (both theoretically and practically) approximate evaluation,

as compared to the obvious Monte Carlo simulation.

We explain the Reverse Reachability technique for a single ad,

and omit the index j for readability for now. The key insight is the

following: let v be an arbitrary node, and consider the (random) set

R of all nodes that can reach v in the randomly generated graph G.
Then, the probability that v is activated starting from A0 is equal

to the probability that A0 ∩ R , ∅. (See, e.g., [31, Lemma 2].)

More generally, if we draw ρ such sets R1, . . . ,Rρ independently,

and for independently uniformly random target nodes v , and A0

intersects α(A0) of them, then
n ·α (A0)

ρ is an unbiased estimator

of the expected number of nodes activated when starting from

A0. In order to leverage this insight for computational savings

in computing ad campaigns, it is important that the estimate be

sufficiently accurate with sufficiently high probability, for a small

enough number ρ of reverse reachable sets. A characterization of

this accuracy is given by the following lemma from [31] (restated

slightly here):

Lemma 4.1 (Lemma 3 of [31]). Assume that

ρ ≥ (8 + 2ϵ) · n ·
c logn + log

(n
k
)
+ log 2

OPT · ϵ2
. (3)

Consider any set S of at most k nodes. With probability at least
1 − n−c/

(n
k
)
, the following inequality holds for S :����n · α(S)

ρ
− σ (S)

���� < ϵ

2

· OPT. (4)

Here OPT is the maximum influence spread that can be achieved by
any set S of at most k nodes.

Lemma 4.1 implies that when ρ is large enough to allow taking

a union bound over all relevant sets S , the fraction of sets Ri that
intersect a candidate seed set S is an accurate stand-in for the actual

objective function σ (S). As already observed by Borgs et al. [4],

this reduces the problem of influence maximization to a Maximum

Coverage problem: selecting a set of atmostk seed nodes that jointly
maximize the number of sets Ri containing at least one seed node.

Without loss of generality, assume that K (j) ≤ K for all j. Let

OPT
(j)

be the maximum influence that advertiser j could achieve

with K (j)
seed nodes, and ignoring the budget constraint B(j). A

lower bound ˆOPT

(j)
on each OPT

(j)
can be found by running the

TIM algorithm [31] with seed sets of size K (j)
. For each advertiser

j, we draw ρ(j) ≥ 9n3m2 ·
c logn+logm+log (

n
K (j ))+log 2

ˆOPT

(j )
·ϵ 2

nodes
10 v

i.i.d. uniformly (in particular, with replacement) fromU (j)
, and for

each such v , we let R ⊆ U (j)
be the random reverse reachable set.

For later ease of notation, we index the nodes as vi ∈ U , and the

corresponding sets as Ri . Notice that the same nodev might appear

as vi for different i , with possibly different sets Ri . For each such

index i of a node vi and set Ri , let j(i) be the unique advertiser j

such that Ri ⊆ U (j)
, and write R(j) = {i | j(i) = j} for the set of all

sets used to estimate the influences for advertiser j.
Focus on any advertiser j, and the influence of any set S ⊆

U (j)
with |S | ≤ K (j)

. Using Lemma 4.1 with ϵ ′ = ϵ
nm ≤ 1

2
and

c ′ = c + logn (m), the influence of S is estimated to within an

additive term
ϵ
nm ·OPT(j) with probability at least 1−n−c

′

/
( n
K (j )

)
=

1 − 1/(ncm) · 1/
( n
K (j )

)
. By a union bound over all such sets S (of

which there are
11

( n
K (j )

)
) and all m advertisers j = 1, . . . ,m, the

influence of all such sets S is simultaneously estimated to within

an additive term of
ϵ
nm · OPT(j), with probability at least 1 − 1/nc .

Assume for the rest of this section that the high-probability event

has happened.

Now consider an arbitrary seed set S with |S | ≤ K , not neces-

sarily contained in just one partitionU (j)
. Let S(j) = S ∩U (j)

, and

let q(j) = n · | {i ∈R(j ) |Ri∩S (j ),∅} |
ρ be the estimated expected influence

of S(j). By the preceding paragraph, the influence of each S(j) is

estimated to within an additive
ϵ
nm · OPT(j), i.e., |q(j) − σ (S(j))| ≤

ϵ
nm ·OPT(j). We next want to show that for each j , the actual payoff

the host obtains from advertiser j, i.e., min(B(j),γ (j) · σ (S(j))) is

10
This value of ρ (j )

is chosen with foresight to apply Lemma 4.1 and allow the appli-

cation of various bounds in the following paragraphs.

11
When running a greedy algorithm, onlyO (mnK ) such sets need to be considered,

which leads to significant computational savings. Here, our goal is to leverage the

reverse reachability technique not necessarily for significant computational savings,

but for improved approximation guarantees.



estimated to within an additive term ϵ/m · OPT; then, by summing

over allm advertisers j , the total estimation error is at most ϵ ·OPT.
To prove the estimation error bound for an advertiser j, we con-

sider several cases. First, if S(j) = ∅, then the payoff 0 is estimated

completely accurately. Second, if B(j) ≤ γ (j), i.e., the advertiser’s
budget is so low that he pays for at most one impression, the payoff

is also estimated completely accurately. The reason is that for any

S(j) , ∅, all nodes in S(j) will always be shown impressions, so

γ (j) · q(j) ≥ B(j) with probability 1. As a result, the payoff from

the advertiser is estimated correctly as B(j). Finally, if B(j) ≥ γ (j),

then OPT
(j) ≤ n ·OPT/γ (j). The reason is that the optimum does at

least as well as using K (j)
seed nodes for advertiser j , which would

yield payoff OPT ≥ min(B(j),γ (j) ·OPT(j)) ≥ γ (j) ·min(1,OPT(j)) ≥

γ (j)OPT(j)/n, because OPT(j) ≤ n. Thus, the estimation error for

the payoff from advertiser j is at mostγ (j) · ϵ
nm ·OPT(j) ≤ ϵ

m ·OPT.12

4.2 The LP and Rounding Algorithm
Notice that except for the budget caps B(j), the objective is a sum of

(scaled) coverage functions. This suggests the natural formulation

of an LP, which allows us to use a randomized rounding technique

due to Gandhi et al. [14].

Recall that each set Ri is generated by a reverse (random) BFS

from a randomly sampled node v ∈ U , where the same node v
may be sampled for multiple i . Also recall that j(i) is the unique

advertiser for the reverse reachable set Ri , and that R(j)
is the set

of all reverse reachability sets Ri with j(i) = j . We use the decision

variable z
(j)
v to denote whether node v was targeted for ad j, xi

for the decision variable whether at least one node from the set Ri
was selected (for its corresponding ad), and the variable y(j) for the
total revenue from advertiser j. The optimization objective can be

expressed using the following Integer Linear Program (ILP):

Maximize

∑
j y

(j)

subject to xi ≤
∑
v ∈Ri z

(j(i))
v for all i

xi ≤ 1 for all i∑
j z

(j)
v ≤ rv for all v∑

v z
(j)
v ≤ K (j)

for all j∑
j ,v z

(j)
v ≤ K

y(j) ≤ n
ρ ·

∑
i ∈R(j ) γ (j)xi for all j

y(j) ≤ B(j) for all j

xi ,y
(j), z

(j)
v ≥ 0 for all i, j,v

z
(j)
v ∈ {0, 1} for all j,v .

(5)

The first constraint states that a target node vi is only covered if

at least one node from the set Ri is selected, and the second con-

straint ensures that the LP derives no benefit from double-covering

nodes. The third constraint encodes the bound on the number of

targeted ads that v can be exposed to, while the fourth constraint

encodes the bound on the seed set sizes of the advertisers j. The

12
Some of the complications in the proof arose because of the possibility of very

different budgets and payoffs per node across advertisers. When the payoff per node

for all advertisers is equal, i.e., γ (j ) = γ̂ for all j , then ρ (j ) ≥ (8 + 2ϵ )n2m2γ 2

0
·

c logn+log (nK)+logK+log 2

ϵ2OPT 2
RR set samples are enough to provide accurate payoff esti-

mates with sufficiently high probability.

fifth constraint captures the overall bound on the total number of

targeted ads. The sixth and seventh constraints characterize the

objective function for advertiser j.
Of course, solving the ILP is NP-hard, so as usual, we consider the

fractional LP relaxation obtained by omitting the final integrality

constraint z
(j)
v ∈ {0, 1}. Without this constraint, the LP can be

solved in polynomial time, obtaining a fractional solution (x,y, z).
To round the fractional solution, we use the dependent rounding

algorithm of Gandhi et al. (See Section 2 of [14].) For more details

of the algorithm, as well as a simpler and more efficient version for

the case with no advertiser-specific seed set size constraints, we

refer the reader to Section 4 of the full version of this paper [22].

For our purposes, the following is the main result:

Theorem 4.2. Under the IC model, with constraints on node ex-
posures and advertiser seed set sizes, a variation of the Gandhi et
al. LP-rounding based algorithm is a polynomial-time (1 − 1/e)-
approximation algorithm, if advertisers pay based on their expected
exposure.

4.3 The Budget Constraints
In Theorem 4.2, we emphasized that advertiser payments have to

be based on the expected exposure, rather than the actual exposure.

Indeed, using the LP rounding approach, maintaining the budget

constraints in each run is not possible without a huge (Ω(m)) loss

in the approximation guarantee. The reason is that LP (5) has an

integrality gap of Ω(m)when the budgets are constrained. Consider

the following input: the influence graph is a star with n leaves,

in which the center node has probability 1 of influencing all its

neighbors, and no one else can influence any other node. Thus, any

advertiser who gets to advertise to the center node will reach the

entire graph.

Suppose that each advertiser j has a budget of B(j) = n/m, and

the center node v has a constraint of rv = 1. A fractional solution

can allocate a fraction of 1/m of the center node to each advertiser;

each advertiser then reaches n/m nodes, not exceeding his budget,

and the host obtains a payoff of n. But any integral solution can

only allocate v to one advertiser, who will then pay at most his

budget n/m. Thus, any integral solution obtains payoff at most n/m.

This problem disappears if each advertiser’s budget must only

be met in expectation. In other words, on any given day, the ad-

vertiser’s budget could be exceeded, even by a lot. But on average,

the advertiser does not pay more for impressions than B(j) per
day. Because the number of impressions resulting from a particular

rounding choice is a random variable in [0,n], standard tail bounds

(e.g., Hoeffding Bounds) show that the total payment is with high

probability close to the expected payment after about O(n) days.

5 EXPERIMENTS
In this section, we describe an empirical evaluation of the rela-

tionship between the total revenue to the host and the algorithm

used, the number of advertisers, and the total number of spon-

sored ads.
13

More importantly, we also consider the interplay of

13
We also conducted scalability experiments, including for a parallelized version of the

Greedy algorithmwe developed. This parallelized algorithm easily scales to networks of

millions of nodes and dozens of advertisers. The algorithm and scalability experiments

are described in the full version [22].



competition with the influence strengths in the network and the

similarity/dissimilarity of the advertisers’ influence networks. We

conducted our experiments on a 36-core Linux server with an Intel

Xeon E5-2695 v4 processor at 2.1GHz and 1TB memory.

All of our experiments are based on the Independent Cascade

(IC) Model. We employed the Reverse Reachability technique to

(approximately) compute the influence of node sets more efficiently.

In Section 4, we obtained an upper bound on the number of RR sets

ρ(j) to guarantee good approximations with high probability. This

bound is quite large, and using the corresponding number of sets

would not permit us to scale experiments to large networks. We

conducted extensive experiments on the number of RR sets that are

sufficient to guarantee high accuracy in practice. These experiments

are described in detail in Appendix B of the full version [22]. The

upshot is that ρ(j) ≥ 10n RR sets are sufficient to guarantee an

estimation error ϵ ≤ 2%. Therefore, for the experiments reported

in the remainder of this section, we used a value of ρ(j) = 10n.

5.1 Data Sets and Generation of IC Instances
We used the following four real-world networks, whose key statis-

tics are summarized in Table 1.

• Facebook [21] is an ego network of a user in Facebook, ex-

cluding the ego node.

• Advogato [21] is a social network whose nodes are users of

the Advogato platform; directed edges (u,v) are trust links.
• DBLP [21] is a citation network in which nodes are papers,

and there is a directed edge from u to v if u cites v .
• NetHEPT [8] is a collaboration network generated from co-

authorships in high-energy physics publications.

Table 1: Data Set characteristics
Dataset #nodes #edges Type

Facebook 2,889 2,981 Undirected

Advogato 6,542 51,127 Directed

DBLP 12,592 49,743 Directed

NetHEPT 15,229 31,376 Undirected

In creating influence networks (with edge probabilities p
(j)
u ,v ), for

most of our experiments, we wanted to avoid the assumption of

uniform edge probabilities, commonly made when evaluating influ-

ence maximization algorithms. The reason is that one key aspect

of our work is the notion of coordination/competition between dif-

ferent advertisers. When all edges have uniform probabilities p
(j)
u ,v ,

the value of a node is solely determined by its network position.

We therefore define a way of generating edge probabilities non-

uniformly that gives some nodes intrinsically more importance. For

each nodev , we draw a parameter λv independently and uniformly

from [0, 0.4] for Facebook, DBLP and NetHEPT , and [0, 0.3] for Ad-
vogato. (Different intervals were chosen to counteract the effects

of varying edge densities in the datasets.) We then define pu ,v =

λu ·λv . We will discuss below howp
(j)
u ,v are correlated for different j .

For all experiments, we set the constraint on the number of

sponsored ads that can be shown to nodev to rv = 1, i.e., each node

can be shown a sponsored ad from at most one advertiser. This

results in maximal inter-advertiser constraints for the seed sets. We

also performed experiments varying the value of rv . The outcome

of these experiments is that what matters is mostly the ratio rv/m.

As rv grows (with m fixed), the optimization problem gradually

decouples across advertisers. As a result, the most interesting and

novel aspects of the model manifest themselves when rv = 1.

For simplicity, we set each advertiser’s payoff per exposure to

γ (j) = 1. The overall numbers of sponsored ads K are varied for

different experiments, and discussed below. In our experiments,

we did not consider individual advertiser seed set constraints K (j)
;

such constraints are heavily studied in traditional Influence Maxi-

mization experiments, and we wanted to focus on the novel aspects

arising due to advertiser competition.

5.2 Comparison between the Algorithms
Our first set of experiments simply compared the performance of

our algorithms and several baseline heuristics. We implemented

the following algorithms:

• Greedy is the standard greedy algorithm for maximizing a sub-

modular function subject to a matroid constraint (Theorem 3.2).

• LP-Rounding is described in Section 4.2.

• Max-Degree considers nodes by non-increasing degrees, and as-

signs them to advertisers in a round-robin order. Each node v is

assigned to rv consecutive advertisers.

• Eigen-Centrality considers nodes by non-increasing eigenvector

centrality
14
, and assigns them to advertisers in a round-robin

order, as with Max-Degree .
• OPTLP is the value of the optimal fractional solution of the LP (5).

It provides an upper bound on the value of the optimal solu-

tion, and thus gives us a benchmark to compare the algorithms’

performance to, on an absolute scale.

5.2.1 Varying the total number of seeds. In the first set of exper-

iments, we kept the number of advertisers constant atm = 3, and

varied the total number K of seed nodes. Thus, these experiments

are similar to evaluations of standard Influence Maximization algo-

rithms. To avoid strong effects of competition between advertisers

(which we are evaluating in later sections), we generated the λ
(j)
v

(and hence the p
(j)
u ,v ) independently for each j.

Figure 1 shows a comparison of the total host payoff achieved

by the algorithms as K is varied from 10 to 100. Both LP-Rounding
and Greedy perform significantly better than Max-Degree or Eigen-
Centrality. This is not surprising, as the heuristics only consider

the network structure, but not the influence probabilities associated
with edges. However, the random generation of edge probabilities

still ensures that nodes of high degree or high centrality tend to be

more influential; hence, in some scenarios (especially with small

K), the payoffs of the Max-Degree and Eigen-Centrality heuristics

are comparable to those of Greedy and LP-Rounding.
A comparison to the fractional LP solution value shows that

both Greedy and LP-Rounding achieve more than 85% of the optimal

payoff, which is significantly more than the respective guarantees of

1

2
and 1 − 1

e
. Experimentally, on these instances, Greedy performed

marginally better than LP-Rounding.

5.2.2 Varying the number of advertisers. For the second set of

experiments, we varied the numberm of advertisers from 1 to 20,

14
The eigenvector entries of the leading eigenvector of the graph’s adjacency matrix.
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Figure 1: Host payoff vs. number of sponsored ads (K)

scaling the number of seeds as K = 10m, to keep an average of

10 seeds per advertiser. Again, we did not add constraints on the

budgets or the individual advertisers’ seed sets.

Using this set of experiments, we also studied the effect (on pay-

off) of competition between advertisers, as caused by the constraint

that each node can only be chosen as a seed for one advertiser.
15

Therefore, we made the influence probabilities p
(j)
u ,v the same for

all j, i.e., the same nodes are most influential for all advertisers.

Figure 2 shows the per-advertiser payoff achieved asm is varied

from 1 to 20. A comparison of the algorithms’ performance yields

results similar to those reported in Section 5.2.1. For a single adver-

tiser, the performance of the Max-Degree heuristic is comparable

to LP-Rounding and Greedy. As explained earlier, this observation

can be attributed to the random generation of uniform edge prob-

abilities. For larger values of m, there is a significant difference

in the performances of the Greedy and LP-Rounding algorithms

vs. the Max-Degree and Eigen-Centrality heuristics. A likely expla-

nation is the following: when many advertisers compete on the

same network, Greedy and LP-Rounding can alleviate competition

for a limited pool of highly influential nodes by indirectly influ-

encing such nodes using other carefully chosen seeds. In contrast,

Max-Degree and Eigen-Centrality do not consider such potential

propagation for seed selection.

Another observation is that as a result of the competition, per-

advertiser payoff decreases and hence, the total host payoff does

not scale linearly inm. For a single advertiser, DBLP and Advogato
have significantly higher payoff than Facebook and NetHEPT . With

20 advertisers, on the DBLP and Facebook networks, the average

payoff per advertiser decreases by factors of 2.8 and 2.4, respectively,

while the decrease for Advogato is a factor of 2. Comparatively,

NetHEPT exhibits only modest competition, and its per-advertiser

payoff decreases only by a factor of 1.4. A possible cause for the

higher decreases may be the very skewed degree distributions of the

DBLP and Facebook networks, which results in a smaller number

of extremely valuable nodes, and the fact that Advogato and DBLP
are directed, resulting in less symmetry between nodes. The strong

competition for DBLP and Facebook can also be observed in the

fact that the gradient of the per-advertiser payoff is very negative

15
If there were no constraint on the number of sponsored ads per node, there would be

no competition, and the total payoff would increase linearly inm. Note also that the

total influence of the seed sets of all advertisers is different from the influence of their

seed sets’ union if assigned to one advertiser: while no two advertisers can choose the

same seed node, if the different seed nodes influence the same nodes later, they will

both derive utility (and the host revenue) from those exposures.

for small values of m. For larger m, the decrease becomes less

pronounced, because there are many marginally useful seed nodes

to choose from.

5.3 Effects of Competition
Next, we focused in detail on the effects of competition on total

host payoff. More specifically, the question we were interested in is

the following: how does the similarity or dissimilarity of influence

networks for different advertisers affect revenue? If the influence

networks are very similar, then high-value seed nodes for one adver-

tiser will typically also be high-value for others, and the constraint

that no node must be chosen by more than a given number of adver-

tisers (in our experiments: 1) will constrain the reach of seed sets.

On the other hand, if the influence networks are very different, then

different advertisers might focus on different parts of the network,

and the host could potentially derive significantly higher payoff.

Since the purpose of these experiments is not to compare the

performance of algorithms, but to draw qualitative insights, we

ran these experiments only using the Greedy algorithm, which had

performed best in our earlier experiments.

For these experiments, we fixed the number of advertisers to

m = 20 and total seeds to K = 200. To cover a spectrum of different

similarities between networks, we used the following generative

model. All advertisers initially have the same edge probabilities

pu ,v . We can assume for simplicity that the graph is complete,

by setting pu ,v = 0 whenever (u,v) is not an edge. A parameter

s ∈ {0, 1, . . . , 200} will capture the similarity between the networks

for different advertisers. Each advertiser j’s influence strengths

p
(j)
u ,v are generated independently as follows. Starting from pu ,v ,
perform s · n

100
node swaps of the following form: select two vertices

u,v independently and uniformly at random, and switch all their

associated influence probabilities, i.e., set p̂
(j)
u ,w = p

(j)
v ,w and p̂

(j)
v ,w =

p
(j)
u ,w for allw , u,v , and p̂

(j)
u ,v = p

(j)
v ,u and p̂

(j)
v ,u = p

(j)
u ,v .

The effect is that the influence networks for all advertisers j
are exactly isomorphic to each other, i.e., no advertiser has an a

priori better network. However, the larger the value of s , the more

independent the networks are, which we expected to lead to more

potential to derive payoff from all advertisers simultaneously.

Figure 3 shows the payoff as a function of s . First, notice that
the host’s payoff does indeed increase steeply in s , nearly linearly

for a non-trivial segment. This shows that competition between

advertisers for high-impact nodes indeed restricts the host’s payoff;
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Figure 2: Average per-advertiser payoff vs. number of advertisers (m)
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Figure 3: Host payoff vs. influence network similarity.

as the advertisers’ influence networks become more dissimilar, the

host can extract more payoff from the joint ad campaigns.

Next, we observe that the relative increase in payoff (comparing

no swaps vs. 2n swaps) is noticeably higher in the Facebook (a factor
of 2.4) and DBLP (a factor of 2.7) networks, compared to the Ad-
vogato (a factor of 1.8) and NetHEPT (a factor of 1.3) networks. This

aligns with our earlier observations: the Facebook and DBLP data

sets seem to have fewer high-influence nodes, as compared to the

more even influence of nodes in Advogato and NetHEPT . Thus, en-
suringmore independence among the isomorphic copies of the Face-
book and DBLP graphs creates more potential for additional payoff.

Further, the payoff saturates at justn/3 swaps forNetHEPT , as op-
posed to ∼ n swaps for Facebook, Advogato and DBLP . This is likely
because networks with more competition need more swaps to com-

pletely realize the potential of essentially independent campaigns.

5.4 Effect of Influence Probabilities
For our final set of experiments, we were interested in the interplay

between competition and edge strengths. We expected two counter-

acting effects: as the probabilities on edges increase, more different

seed nodes may become capable of reaching the same large part of

the network, thus reducing the negative effects of competition. On

the other hand, as the edge probabilities decrease, most cascadeswill

not spread beyond a few nodes; as a result, all parts of the network

may provide small influence, so again, the additional detrimental

effects of competition could be reduced.

Form advertisers, we chose a combined seed set size of K = 10m,

and gave each advertiser a budget of B(j) = n/5. Different from the

earlier experiments, we assigned uniform probabilities of p to the
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Figure 4: Relative payoff with m = 20 advertisers vs. influ-
ence probability p (shown in non-linear scale to display in-
teresting regimes)

edges, and varied the value of p. Again, because our goal was to
study the interplay between competition and model parameters

(rather than comparing algorithms), we used onlyGreedy algorithm.

We were interested in the host’s payoff increase as the number of

advertisers is increased from 1 to 20. We call the ratio between the

two quantities the relative payoff atm = 20, and denote it by α .
Figure 4 shows the relative payoff α as a function of p. The two

counter-acting effects produce — for all four networks — a local

minimum in α . As p grows large, the ratio saturates at 20; this is not

surprising, as with high enough probabilities, essentially any node

will reach the entire graph, and there is in effect no competition,

resulting in a 20-fold increase in host payoff.

ForAdvogato andNetHEPT (the two graphswhich earlier showed

less susceptibility to competition), the ratio α is minimized at the

same p = 0.02. However, the underlying reasons appear to be differ-

ent. Advogato has a high edge density; as a result, advertisements

spread to a large portion of the graph even for small p; in particular,

already for p ≥ 0.1, the reach of every ad campaign j matches the

budget B(j). The curve for NetHEPT looks similar, but for different

reasons. Here, the reason appears to be that NetHEPT is sparse and

exhibits little competition from the start, which is confirmed by the

fact that α never drops below 15. Here, the advertisers’ budgets B(j)

are only fully extracted around p = 0.25, but the decentralized na-

ture of the graph ensures lack of harmful competition much earlier,

which is why α saturates around p = 0.1.

For Facebook and DBLP , the two graphs exhibiting more competi-

tion, the minimum is attained at p = 0.04. Notice that the minimum



value of α for these data sets is significantly smaller and the satu-

ration of α = 20 happens later than for the other networks. This

behavior again shows the stronger competition. Specifically for

DBLP , even at p = 0.3, the network only extracted about half of the

sum of all advertiser budgets.

6 FUTUREWORK
We explored the problem of maximizing the host’s payoff for a bud-

geted multi-advertiser setting with constraints on the ad exposure

of each node and each advertiser’s seed set size.

Our work was in part motivated by considering a more “natu-

ral” objective function than the notion of regret from [3]. If one

believes that giving advertisers free exposure is detrimental to the

host company, excess exposure could alternatively be modeled as a

negative penalty term in the objective function. In additional work

not included here, we show that if the penalty per unit excess expo-

sure is constant, the greedy algorithm and LP rounding algorithm

still yield constant-factor approximation guarantees.

There are several natural directions for future work. Perhaps

most directly, the LP-rounding based algorithm only satisfies the

budget constraint in expectation; indeed, we have shown a large

integrality gap for the LP. It is a natural question whether a (1−1/e)-

approximation guarantee can be obtained while always satisfying

the budget constraints, and without invoking the heavy Continuous

Greedy machinery discussed in Section 3.

An interesting empirical study would be to evaluate to what ex-

tent influential nodes in one advertiser’s network are also influential

in other advertisers’ networks. Within typical social networks, one

would expect significant differences based on individuals’ expertise;

on the other hand, the use of celebrities to endorse products entirely

outside their realm of expertise shows that humans appear willing

to project expertise in one area on other areas as well.
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