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ABSTRACT
We present techniques for generating random graphs whose Lapla-

cian spectrum approximately matches that of a given input graph.

The motivation for matching the Laplacian spectrum is that it nat-

urally encodes high-level connectivity information about the input

graph; most existing models (e.g., variants of the Configuration

Model, Stochastic Block Model, or Kronecker Graphs) focus on

local structure or limited high-level partitions.

Our techniques succeed in matching the spectrum of the input

graph more closely than the benchmark models. We also evalu-

ate our generative model using other global and local properties,

including shortest path distances, betweenness centrality, degree

distribution, and clustering coefficients. The graphs produced by

our model almost always match the input graph better than those

produced by the benchmark models with respect to shortest path

distance and clustering coefficient distributions. The performance

on betweenness centrality is comparable to the benchmarks, while

a worse match on the degree distribution is a price our method

pays for more global similarity.

Our results suggest that focusing on spectral properties may lead

to good performance for other global properties, at a modest loss in

local similarity. Since global connectivity patterns are usually more

important than local features for processes such as information

flow, spread of epidemics, routing, etc., our main goal is to advocate

for a shift in focus from graph generative models matching local

properties to those matching global connectivity patterns.

CCS CONCEPTS
•Mathematics of computing→ Spectra of graphs; Probabilis-
tic algorithms; • Theory of computation → Generating ran-
dom combinatorial structures; Linear programming.
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1 INTRODUCTION
Random graph models for generating “realistic-looking” graphs

play a number of important roles in network science and network

data mining. Their uses include:

• Produce graphs to evaluate the computational performance

of algorithms or protocols (see, e.g., [32]).

• Produce graphs to evaluate the correctness or quality of the

output of algorithms in a controlled setting.

• Formally prove that certain graphs are likely to have certain

properties, and derive (descriptive or prescriptive) insights

about real-world networks from these proofs.

In all cases, the insights gained from the model can only be

useful if the generated graphs resemble the class of real-world

networks about which one is aiming to make statements [46]. More

specifically, this resemblance must apply to graph parameters that

are relevant to the kinds of structures or processes that the algorithm
depends on, or the theorem reasons about.

To illustrate this issue, consider the following example. A re-

searcher seeks insight into the spread of epidemics in social net-

works, many of which he has observed to follow particular degree

distributions. He proves (or observes from simulations) that when

a graph is drawn uniformly at random subject to this degree dis-

tribution, with high probability, an epidemic will spread very fast

on it. He concludes that social networks are very susceptible to

epidemics.

The concern with this inference is that social networks may have

additional properties beyond the observed degree distribution; these

properties may be exceedingly rare among the sampled graphs.

For instance, it is well known (see, e.g., [8, 15]) that even subject

to most fixed degree distributions, almost every graph has high

expansion; in turn, high expansion facilitates epidemic spread under

many natural models [6, 26]. On the other hand, high expansion

is also nearly synonymous with a lack of pronounced community

structure, whereas social networks typically do have pronounced

community structure. As a result, the observation that epidemics

spread fast on a random graph subject to a given degree distribution

is likely more due to the expansion of random graphs than the given

degree distribution.

With some exceptions (e.g., [52, 53, 55]) discussed below, most
1

generative graph models draw a graph (nearly) uniformly from an

ensemble, subject to local properties such as (expected) degrees,

joint degrees, or triangle counts, and/or a global partition into com-

munities [5, 8, 14, 15, 27, 29, 30, 34, 41, 43, 44, 46, 49]. Going beyond

those basic models, exponential random graph models (ERGMs)

[24, 47] draw graphs from a distribution that rewards or penal-

izes user-specified local features; the Kronecker Graph Model [36]

allows recursive specification of “community” structure in a gener-

alization of stochastic block models (SBM). Another line of work

1
An orthogonal class of models prescribe a generative (growing or rewiring) process

based upon a plausible real-world dynamic [4, 37, 50].
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uses deep neural networks (DNNs) to generate graphs. The hope is

that using DNNs, one can avoid explicitly specifying the (local or

global) properties one desires to replicate, instead learning them

automatically from a training data set of enough “similar” graphs

[17, 39, 54, 56]. An exception is the NetGAN approach [7]. NetGAN

trains a deep network from a single input graph, with the goal of re-

producing “realistic-looking” random walks, i.e., sequences of node

visits. From these sequences, NetGAN then extracts empirical edge

frequencies, and uses these to generate random graphs resembling

the input graph.

While most constraints imposed by such models are typically
2

local in nature, most network properties and dynamics of interest

to researchers are global. These include the spread of epidemics or

information, the prevalence or strength of communities in graphs,

the distribution of distances between individuals, or the capacity

for information flow, among many others. These graph properties

are all closely affected by the graph’s expansion; hence, if the ran-

dom graph model overwhelmingly generates expander graphs, the

effects due to other parameters may be overshadowed.

The main high-level point of this paper is the following: If one
is interested in global network properties, then a generative model
should try to match these global properties with those of the real-world
networks the model is trying to mimic.

1.1 Approximately Matching Graph Spectra
Our approach to “matching global structure” focuses on the spec-
trum (eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn ) of the (normalized)

graph Laplacian of the input graph. (Definitions of all key concepts

are given in Section 2.) The spectrum of the graph Laplacian is

known to capture connectivity properties [21, 23]. Best known is

Cheeger’s Inequality [13], which relates the spectral gap λ2 with the

graph’s conductance. More intricate results [13, 35] show that small

values of λ3, λ4, . . . indicate additional node sets that are sparsely

connected to each other.

Concretely, given an (undirected) input graphG∗
with spectrum

0 = λ∗
1
≤ λ∗

2
≤ · · · ≤ λ∗n , our goal is to generate random graphs G

with spectrum 0 = λ1 ≤ λ2 ≤ · · · ≤ λn such that λi ≈ λ∗i for all
i . The intuition is that a similar spectrum should result in similar

global connectivity properties.
3

We propose intricate heuristics for randomly generating such

graphs, and evaluate the heuristics extensively. The central view-

point exploited throughout is that a (symmetric) matrix is naturally

characterized by its spectrum and orthonormal eigenbasis. Since

the spectrum is given, finding a graph Laplacian reduces to finding

a suitable orthonormal basis. The problem is that for most bases, the

resulting “graph adjacency matrix” A will have entries far from the

2
The SBM prescribes a high-level partition, but typically only into a constant number of

partitions; the recursive structure prescribed by the Kronecker model is more intricate,

but depends only on a small number of parameters.

3
It may appear natural to aim to match the eigenvalues exactly: λi = λ∗i for all

(or some) i . There are two reasons to prefer an approximation instead. The first is

computational — we are not aware of any way to efficiently decide if any graph has a

given spectrum, let alone find one. Second, while there are non-isomorphic pairs of

graphs with the same spectrum, such pairs are exceedingly rare: for example, Butler

and Grout [10], based on computational enumeration, estimate that only roughly

one in 10
23

graphs has a non-isomorphic cospectral graph. Thus, most of the time, a

generative model would be forced to always return the input graph G∗
.

set {0, 1}. Our approach is to produce the actual adjacency matrix

gradually, using the following steps (detailed in Section 3):

(1) Sample a random orthonormal basis to construct a candi-

date Laplacian matrix with the desired spectrum. Use linear

programming to find a matrixM whose Laplacian is approx-

imately the candidate matrix.

(2) Keeping the spectrum fixed, perform a walk on possible

orthonormal bases, guided by an objective function that

pushes the entries ofM close to 0 or 1.

(3) Use an LP-based algorithm to minimally perturb the entries

ofM to end up inside [0, 1], while maintaining the row sums.

This may perturb the spectrum, but the LP’s objective is

designed to keep the perturbation small.

(4) Use a combination of deterministic rounding across eigen-

cuts with small eigenvalues and randomized rounding of

other edges to roundM to a graph G.

In Section 7, we evaluate this algorithm on multiple real-world

networks. We generate samples using our approach, and compare

them to the graphs generated according to the configuration model,

stochastic block model, and Kronecker graph model. The compari-

son is based on the following global and local graph parameters:

the spectrum itself, betweenness centralities, clustering coefficients,

degree distribution, and the distribution of shortest path lengths.

We observe (not surprisingly) that the spectrum is in factmatched

significantly better by our approach. For the other metrics, the spec-

tral approach typically performs comparably (sometimes slightly

better, sometimes slightly worse) to the best of the other approaches;

for shortest path lengths, it outperforms the other models signifi-

cantly most of the time.

Our work raises many concrete questions and big-picture direc-

tions for future work, discussed in more detail in Section 8. Perhaps

most immediately, our algorithms currently scale to graphs of a

few thousand nodes, but not beyond. In order to apply them to

realistic networks, it is important to speed up the generation by

several orders of magnitude. We therefore view this work not as a

complete or final solution to the problem, but as a first step. Our

goal in this work was to show that (1) it is computationally feasible

to generate graphs matching a given graph’s spectrum fairly well,

and (2) doing so also helps in matching other important global

graph properties. We expect future work to yield faster heuristics

and different approaches which will allow these ideas to be applied

to even more practical instances. Beyond the running time of the

algorithm, there are also many natural questions for future work

regarding provable guarantees for the objectives we pursue. Our

algorithms do not come with provable approximation guarantees,

and obtaining such guarantees would be desirable — though it also

appears very challenging.

1.2 Related Work
Our goal is directly related to inverse eigenvalue problems: construct-
ing matrices with a given spectrum, subject to other structural prop-

erties [12]. Ours is an inexact inverse eigenvalue problem, because

the spectrum only needs to be matched approximately. On the other

hand, our task is to generate a diverse collection of matrices, making

a deterministic construction inadequate.



Typical structural properties considered in the context of in-

verse eigenvalue problems include symmetric non-negative and

self-adjoint matrices, both of which have known constructions

[20, 22, 33]. Deciding if a spectrum is realized by a real non-negative

matrix is NP-hard [9].

Inverse eigenvalue graph problems ask whether a graph exists

such that a given associated matrix (e.g., adjacency, random walk,

Laplacian) has a given spectrum. Godsil and McKay present a

method for generating non-isomorphic co-spectral graphs with

respect to the adjacency matrix [28]. There has also been work on

generating certain families of co-spectral graphs with respect to

the Laplacian matrix [40]. We are interested in the (inexact) inverse

eigenvalue graph problem with respect to the symmetric normal-

ized Laplacian; with respect to the normalized Laplacian, Butler and

Grout [10] have shown how to construct some families of (exactly)

cospectral graphs with special structure.

Spectral graph generative approaches have been proposed in

some prior work, e.g., [52, 53, 55]. The idea in these approaches

is to consider spectral embeddings of the means and covariances

of a set of graphs, then interpret these embeddings as samples

from a distribution, and sample from this distribution, with the

goal of interpolating between graphs. The sampling produces a

candidate “Laplacian matrix.” As discussed above, in general, it is

not guaranteed that such a candidate matrix is the Laplacian of

any matrix resembling a graph adjacency matrix, and indeed, a

lot of our effort here is focused on actually producing a suitable

adjacency matrix, and on choosing a “Laplacian matrix” that lends

itself to this transformation.

As far as we can tell, [55] does not describe any such procedure.

[52] suggests thresholding the values of the matrix, including as

edges of the graph those pairs (i, j) for which the entries of the

Laplacian aremost negative.We compare two different thresholding

approaches in this vein to our algorithms in Section 7.3, and find

that they perform significantly inferior in matching the spectrum

of the input graph.

In very recent work, [3] proposed an approach very similar

to ours. Their goal is also to generate graphs whose spectrum

approximately matches that of a given input graph; however, [3]

use the Modularity matrix [42] instead of the normalized Laplacian.

They use a low-rank approximation of theModularitymatrix, which

is then transformed back to an adjacency matrix, noised, scaled,

and truncated, to define edge probabilities pi, j ; subsequently, each
edge (i, j) is included independently with probability pi, j . The rank
of the approximation is a user-specified feature, capturing how

different the output graphs are likely to be from the input graph.

2 MODEL AND PRELIMINARIES
Throughout this paper, all graphs are undirected, and all matrices

(except basis matrices) are real and symmetric. Vectors are denoted

by boldface, including 0 and 1 for the all-0 and all-1 vectors. Graphs
have n nodes, and matrices are of dimension n × n.

For any matrix (adjacency or otherwise) A = (ai, j )i, j ∈ R
n×n

,

we use λ(A) to denote the set of A’s eigenvalues λ(A) = {λ1(A) ≤
λ2(A) ≤ · · · ≤ λn (A)}, also called the spectrum ofA. We use Λ(A) =
diag(λ1(A), λ2(A), . . . , λn (A)) to denote the diagonal matrix whose

diagonal entries are λ1(A), λ2(A), . . . , λn (A).

For any matrix A (in particular, an adjacency matrix), we let

di (A) =
∑
j ai, j , and call it the degree of node i in A. The degree

matrixD forA isD(A) = diag(d1(A),d2(A), . . . ,dn (A)). The identity
matrix is denoted by I = diag(1, 1, . . . , 1).

Definition 2.1 (Symmetric Normalized Laplacian Matrix). The
symmetric normalized Laplacian matrix L(A) for the symmetric

n × n matrix A is L(A) = I − (D(A))−1/2A(D(A))−1/2
.

We call λ(L(A)) the Laplacian spectrum of A. It is well known
that λ1(L(A)) = 0, and λn (L(A)) ≤ 2 [13]. Throughout this paper,

all eigenvalues we consider will be of Laplacians of matrices; when

there is no risk of confusion, we then simply refer to the Laplacian

eigenvalues as λ1, λ2, . . . , λn , omitting the dependence on A. In
that case, the corresponding (normalized) eigenvectors are denoted

by x1,x2 . . . ,xn , and the (orthonormal) matrix of eigenvectors is

X (A) = (x1,x2 . . . ,xn ). The set of all such matrices, i.e., n × n ma-

trices of orthonormal column vectors, is called the Stiefel manifold
[18], and denoted by Sn .

The difference λ2 −λ1 = λ2 is called the spectral gap of L(A). The
corresponding eigenvector x2 is called the Fiedler vector [21, 23]
of A, and plays an important role in identifying low-conductance

cuts.

Given a diagonal matrix Λ of eigenvalues, we can obtain a matrix

Awith spectrumΛ from any basis matrixX simply asA =WΛ(X ) :=

XΛXᵀ
; this is nothing but the standard eigendecomposition of A.

Conversely, given a symmetric real matrixA, there is always a basis
(of A’s eigenvectors) such that A = XΛ(A)Xᵀ

.

Definition 2.2 (Computational Goal). The given (undirected and

connected) graph on n nodes is denoted byG∗
, and has (symmetric)

adjacency matrix A∗ ∈ {0, 1}n×n . The eigenvalues of L(A∗) are

0 = λ∗
1
≤ λ∗

2
≤ · · · ≤ λ∗n ≤ 2.

The goal is to randomly sample a graph G with adjacency ma-

trix A ∈ {0, 1}n×n whose Laplacian spectrum 0 = λ1(L(A)) ≤

λ2(L(A)) ≤ · · · ≤ λn (L(A)) ≤ 2 is similar to that of A∗
, in the sense

that λi (L(A)) ≈ λ∗i for all i .

Definition 2.2 is not formal, in that it does not quantify the

meaning of “≈”, i.e., it does not specify how close is “close enough”

in terms of the Laplacian spectrum of A. It would be desirable to do
so, but we are not aware of ways to sample graphs whose spectrum

is provably close to a given spectrum. Indeed, the following result

of Borobia and Canogar [9] suggests that this may be difficult:

Theorem 2.3 ([9]). The following problem is NP-hard: given a
sequence of n real numbers λ1, . . . , λn , decide if there exists a real
nonnegative matrix A of order n with eigenvalues λ1, . . . , λn .

Theorem 2.3 does not apply directly to our problem, in that it

(1) asks about the spectrum of A, rather than of L(A), and (2) only

requires that all entries of A be non-negative, rather than from

{0, 1}. Typically, requiring integrality of a solution makes problems

harder (e.g., linear programming), so we expect the hardness result

to apply to our problem as well; however, at this time, we have no

proof of NP-hardness with the integrality restriction.

3 ALGORITHM OUTLINE
Our graph generative algorithms can be divided into two stages:



(1) Relaxed SpectrumFitting: Find a templatematrixM whose

Laplacian spectrum λ(L(M)) is very close to the target spec-

trum λ(L(G∗)); the entriesmi, j may in principle be far from

{0, 1} (including fractional, negative, or larger than 1), but

the goal is for them to be close to {0, 1}.

(2) TemplateMatrix Perturbation:Gradually “round”M , first

to a matrix P ∈ [0, 1]n×n , then to an actual adjacency ma-

trix. In the process, aim to minimize perturbations to the

Laplacian spectrum.

3.1 Relaxed Spectrum Fitting
The Relaxed Spectrum Fitting phase makes heavy use of the cor-

respondence between matrices with a given spectrum and basis

matrices. Its goal is to identify a good candidate orthonormal basisX
so that the template matrixM defined by L(M) =WΛ∗ (X ) = XΛ∗Xᵀ

has entries in (or close to) the interval [0, 1]; or, even better, close

to 0 or 1.

Our method starts by generating a random graph Ĝ from the

configuration model [5] with the degree distribution of G∗
. Let Â

be the adjacency matrix of Ĝ, and X̂ its eigenbasis. In the basic

version of the Relaxed Spectrum Fitting phase, we use a linear

programming (LP) based approach to find a template matrix M
with L(M) ≈WΛ(X̂ ) (see Section 4).

The matrix M could have many entries far from [0, 1]. Thus,

rather than simply using X̂ , the extended version of our algorithm

uses continuous optimization techniques to search the Stiefel man-

ifold for a basis X such that the corresponding template matrixM
has entries closer to 0 and 1. This optimization does not scale to

large graphs, but more often than not makes small improvements.

3.2 Template Matrix Rounding
As a first step to rounding the template,M is converted to a matrix

P ∈ [0, 1]n×n , whose entries can be viewed as edge strengths or

probabilities for randomized rounding. We use the following proxy

problem: find an “error” matrix E such that pi, j =mi, j +ei, j ∈ [0, 1]

for all i, j and the spectrum ofM is close to that of P . We show (in

Section 6) how to cast the problem of finding E as a linear program,

and prove that the objective function gives an upper bound on the

sum of eigenvalue perturbations.

Finally, P needs to be converted to an adjacency matrix A. Small

eigenvalues λk are particularly sensitive to changes going from

M to P or from P to A. We therefore treat them separately. Our

goal is to make initial edge modifications judiciously to counteract

such effects, and to prevent large changes in λk for small k . To do

so, we focus on the first approximately balanced
4 eigencut (Sk , Sk ),

defined by Sk = {i | xk,i < 0} and Sk = {i | xk,i ≥ 0}, wherexk are

eigenvectors of L(P). For each edge crossing (Sk , Sk ), we estimate

how much its addition or removal would affect λk . We then select

edges (i, j) to round pi, j up or down to correct λk as well as possible.

We observe experimentally that when k , 2, if rounding edges

across (Sk , Sk ) shrinks λk , the spectral gap is typically lowered as

well. There could be other candidate cuts that provide valuable

4
For most inputs, k = 2 and we round edges across the Fiedler cut. Occasionally, the

Fiedler cut is very unbalanced. In those cases, rounding edges across the Fiedler cut

very judiciously is largely misspent effort, since later steps are likely to disconnect the

smaller side (plus some nodes) from the rest of the graph.

connectivity information, but we restrict our search to eigencuts to

keep the computational cost manageable.

In a final step, we round all remaining edges, independently

including edge (i, j) with probability pi, j .

3.3 Randomness
There are two sources of randomness in our generative process:

the random initial generation of an orthonormal matrix X via a

configuration model graph Ĝ, and the independent random edge

inclusions in the final part of the Template Matrix Rounding phase.

Naturally, the process does not guarantee sampling a graph

uniformly from an ensemble of graphs with approximately correct

spectra; however, experimentally, it leads to significant variation in

the graphs that are generated, obviously an important criterion for

graph generative processes [48].

4 RELAXED SPECTRUM FITTING
We are given a basis X and associated matrix A = WΛ∗ (X ), and

would like to identify a matrix M whose normalized Laplacian is

L(M) = A; ideallyM , should be the adjacency matrix of a graph or

close to one. It is obvious how to compute L(M) fromM . However,

we need to computeM given a candidate L(M). The transformation

requires knowing the degrees di of nodes in M . The following

lemma motivates our LP-based approach for finding di :

Lemma 4.1. The matrix A is the Laplacian of some symmetric
matrixM with positive row sums if and only if there exists a vector
y > 0 (all entries are strictly positive) such that Ay = 0.

Proof. For the first direction, assume that A = L(M) = I −
D−1/2MD−1/2

for some symmetric matrix M with positive row

sums. Let di =
∑
jmi, j > 0 be the degree of i inM , and let y be the

vector with yi = d
1/2

i . Clearly, y > 0, and

Ay = y−D−1/2MD−1/2y = y−D−1/2M ·1 = y−D−1/2d = 0.

For the converse direction, let y > 0 be a solution to Ay = 0. Let
Y = diag(y1,y2, . . . ,yn ), and defineM = Y 2 − YAY . The vector of
row sums ofM is

M · 1 = (y2

i )i − YAY · 1 = (y2

i )i − YAy = (y2

i )i > 0.

And because

L(M) = I−Y−1MY−1 = I−Y−1(Y 2−YAY )Y−1 = I−I+A = A,

A is indeed the symmetric normalized Laplacian ofM . �

The vector entries yi in Lemma 4.1 are the square roots of the

degrees of node i . During the computation, the basisX may be such

that the associated matrixWΛ∗ (X ) is not the Laplacian of any matrix

M with positive row sums.
5
In order to compute an approximate

and usable matrix M , we relax the constraint that My = 0, and
instead aim to minimize | |My | |∞. We approximate the positivity

constraint by requiring thatyi ≥ ϵ for all i , for a very small positive

constant ϵ > 0; we then obtain the following linear program:

5
Because λ∗

1
= 0, the matrixWΛ∗ (X ) is always singular. However, the corresponding

eigenvector x1 will typically have negative entries, so we are not guaranteed a vector

y > 0.



Minimize b
subject to |

∑n
j=1

ai, jyj | ≤ b i = 1, . . . ,n

yj ≥ ϵ j = 1, . . . ,n.

(1)

The procedure for fitting a graphM is now as follows:

(1) Given an orthonormal basis X , compute A =WΛ∗ (X ).

(2) Solve the LP (1), obtaining a solution (b,y).
(3) Output the template matrix M = Y 2 − YWΛ∗ (X )Y , where

Y = diag(y).
(4) To match the edge density of M to that of the target, set

M :=

∑
i d∗

i∑
i di

·M , where d∗i are the node degrees in the target

graph, and di =
∑
jmi, j .

If b = 0, then L(M) =WΛ∗ (X ), and we have found a template ma-

trixM such that L(M) has exactly the desired spectrum Λ∗
. We note

that the spectrum is invariant to the scaling in Step (4). We perform

the scaling to match the target edge density before perturbing the

edges, in order to avoid having to perturb the matrix twice to yield

entries in the interval [0, 1]. Even in this case, individual entries

mi, j of the template matrix may be negative or larger than 1 (and

of course fractional): the solution y only guarantees that the total
degree of each node is positive.

When b > 0, we have that L(M) ,WΛ∗ (X ), meaning that typi-

cally Λ(M) , Λ∗
as well, i.e., the spectrum can be perturbed. We

show that the deviation in spectrum can be bounded using the LP

objective b; the lemma also motivates our choice of LP objective.

Lemma 4.2. Let δ be such thatb ≤ δyi for all i . Then, the perturbed
eigenvalues satisfy |λi (L(M)) − λi (A)| ≤

δ
1−δ · |λi (A)|.

Proof. The degrees underM aredi =
∑
k mi,k = y

2

i −yi
∑
k ai,kyk ,

so the perturbed Laplacian matrix L = L(M) has entries

ℓi, j =
ai, jyiyj

(y2

i − yi
∑
k ai,kyk )

1/2(y2

j − yj
∑
k aj,kyk )

1/2

.

Writing zi =
yi

(y2

i −yi
∑
k ai,kyk )1/2

and Z = diag(z1, z2, . . . , zn ),

the perturbed Laplacian therefore satisfies L = ZAZᵀ
.

Applying Theorem 4.3 (below) with D = Dᵀ = Z , we get that
the relative perturbation in eigenvalues is at most

|λi (L(M)) − λi (A)| ≤ |λi (A)| · | |Z
ᵀZ − I | |2.

The norm of a diagonal matrix is its maximum entry, so

| |ZᵀZ − I | |2 = max

i

∑
k ai,kyk

yi −
∑
k ai,kyk

≤ max

i

b

yi − b
,

by the LP’s first constraint. Because b ≤ δyi for all i by assump-

tion, we obtain the claimed bound. �

Theorem 4.3 (Theorem 2.1 of [19]). Let Ã = DᵀAD, where D is
a nonsingular matrix. Let λi and ˜λi be the eigenvalues of A and Ã,
respectively. Then, | ˜λi − λi | ≤ |λi | · | |D

ᵀD − I | |2, for all i .

5 STIEFEL MANIFOLD OPTIMIZATION
While the techniques in Section 4 find a goodM so L(M) ≈ XΛXᵀ

,

if X was a bad basis, noM will be satisfactory, and the entries will

lie far outside [0, 1], or the Laplacian eigenvalues will be perturbed.

To improve the basis before committing to it, we can perform a

walk on the Stiefel manifold, using known techniques to locally

optimize an objective function that rewards template matricesM
with entries close to 0 or 1. Specifically, we define the objective

function F (M) =
∑
i<j (1 −mi, j )

2m2

i, j , which has minima when

allmi, j are in {0, 1} and steeply penalizes entries far from 0 and 1.

For any basis X ∈ Sn , let yX be the solution to the linear

program (1) (applied to A = XΛ∗Xᵀ
), and YX = diag(y). Then,

M(X ) = Y 2

X − YXXΛ∗XᵀYX is the candidate template matrix for

X . The objective is then to find a basis X ∈ Sn (approximately)

minimizing F (M(X )).

While the objective function F itself is differentiable (which

would allow for a straightforward application of existing mani-

fold optimization techniques), the transformation X 7→ M(X ) is

computed via the solution to a linear program. It is not clear how

optimal solutions to the linear program (1) change with X , and in

particular whether X 7→ F (M(X )) is continuous or differentiable.

Therefore, few guarantees for known optimization techniques ap-

ply in our setting. To compensate, we use a small maximum step

size of .0001 in the optimization.

To perform optimization over the Stiefel manifold, we use known

iterative optimization techniques. Specifically, we use the Polar De-
composition retraction scheme [2]6. Retraction schemes in each step

t identify a search direction ηt in the tangent bundle of the cur-

rent basis Xt , such that moving in the direction ηt minimizes F .
(See [1] for definitions of the notions of tangent bundle and retrac-
tion.) The scheme moves Xt by a step size τt in the direction ηt ,
then projects it back onto the manifold using a retraction RX (τ ). A
retraction scheme specifies both the retraction RX (τ ) and search

direction η such that RX (τ ) is a descent direction: the derivative
R′
X (τ ) must be equal to the projection of − grad(F (M(Xt ))) onto

the tangent bundle at X . The step size τt is typically chosen ac-

cording to the Armajiro-Wolfe Conditions, which ensure that at the

point Xt + τt , the decrease F (Xt ) − F (Xt + τt ) is proportional to τ
(sufficient-decrease), but also that τt is sufficiently large such that

one cannot decrease F (Xt + τt ) by taking a larger step (curvature
condition) [45]. One iteration of the Stiefel manifold optimization

can be summarized as follows:

(1) Using Xt , solve the template fit LP (1) to computeM(Xt ).
(2) Treat the yXt computed from LP (1) as constant, and us-

ing grad(F (M(Xt ))), compute a search direction ηt using a
retraction method.

(3) Perform a line search technique to find a step size τt that
obeys the Armajiro-Wolfe conditions [45].

(4) Set Xt+1 = Xt + τtηt .
(5) Repeat until a local optimum is reached.

We implemented and experimented with two different retrac-

tion methods: the Cayley Transform Retraction [51] and the Polar-

Decomposition Retraction [2]. Our experiments showed that the

Polar-Decomposition Retraction performed better most of the time.

6 ROUNDING THE TEMPLATE MATRIX
6.1 Perturbing the Template Matrix
The next step is to compute an additive perturbation matrix E that

leaves the row sums (i.e., degrees) of M intact (first constraint of

6
Manifold optimization techniques can generally be divided into two categories: re-

traction schemes and geodesic schemes. We use retractions as geodesics are often

difficult to compute [1].



LP (2)), and ensures that all entries of P = M + E are in [0, 1] (third

constraint). Subject to this, we aim to minimize the weighted sum

of absolute perturbations. The variables are ei, j and qi, j = |ei, j |
(second constraint) for i , j (with ei,i = 0 implicitly). di =

∑
jmi, j

denotes the (fractional) degree of i .

Minimize

∑
i,j

qi j
d1/2

i d1/2

j

subject to

∑
j ei, j = 0, i = 1, . . . ,n

qi, j ≥ |ei, j | for all i , j
0 ≤ mi, j + ei, j ≤ 1 for all i , j
ei, j = ej,i for all i , j

(2)

Keeping the degrees constant ensures that the normalization

factors for the Laplacian are the same for P andM . The choice of

objective function is justified by the following lemma.

Lemma 6.1. Let (ei, j ) be an optimal solution of the LP (2), with
objective value b. Then, the eigenvalues of the Laplacians ofM and
P = M + E are close:

∑
i |λi (L(M)) − λi (L(P))| ≤ b.

Proof. Consider the perturbation ∆ = L(M) − L(P) of the Lapla-
cian matrix. Applying Theorem 6.2 (below) with Φ(x) = |x |, we
obtain that

∑
i |λi (L(M)) −λi (L(P))| ≤

∑
i |λi (∆)|. In the remainder

of the proof, we will show that

∑
i |λi (∆)| ≤ b.

Because ∆ is symmetric and real-valued, ∆ = U ᵀΛU for a di-

agonal matrix Λ = diag(λ1, . . . , λn ) of eigenvalues λi of ∆, and
orthonormal U . Let Λ̂ = diag(|λ1 |, . . . , |λn |) be the diagonal ma-

trix of absolute values of ∆’s eigenvalues, and ∆̂ = U ᵀΛ̂U . De-

fine σi = sgn(λi ) (with sgn(0) := 1), and Σ = diag(σ1, . . . ,σn )
to be the diagonal matrix of signs of λi , so that Λ̂ = ΣΛ. Then,
∆̂ = U ᵀΣU∆ = U ′∆, where U ′ = U ᵀΣU is a unitary matrix. Be-

causeU ′
is unitary, its entries are bounded by 1 in absolute value.

We can therefore bound∑
i

|λi (∆)| = tr(∆̂) = tr(U ′∆) =
∑
i

∑
j
u ′i, jδj,i ≤

∑
i, j

|δj,i |.

We have shown that the sum of absolute eigenvalues of a (real

symmetric) matrix is bounded by the sum of absolute values of

its entries
7
. It remains to bound the sum of absolute entries of ∆.

Because the degrees (row sums) are the same, i.e., di , forM as for P ,

we obtain that δi, j =
mi, j−pi, j
d1/2

i d1/2

j

. Summing their absolute values over

all i, j , this is exactly the objective function of the LP (2), which we

assumed to be bounded by b. �

Theorem 6.2 (Theorem 1 of [31]). If A,B are n × n Hermitian
matrices, their eigenvalues can be enumerated in such a way that
for every real-valued convex function Φ on R, we have

∑
i Φ(λi (A) −

λi (B)) ≤
∑
i Φ(λi (B −A)).

6.2 Cut Rounding
As outlined in Section 3, the cuts corresponding to small λk are par-

ticularly important for global connectivity properties. Our rounding

procedure therefore first focuses on matching those eigenvalues.

The main point of comparison is the Fiedler cut (S∗, ¯S∗) of the input
graph G∗

; without loss of generality, we assume that |S∗ | ≤ n/2.

7
We suspect that this must be a well-known fact, but could not find a reference.

Ideally, we would like to focus on rounding edges across the Fiedler

cut of the fractional graph P , so as to match λ2(G
∗). However, it is

possible
8
that the Fiedler cut of P is extremely unbalanced, with

one side only having a handful of nodes. Efforts to round such

unbalanced cuts are largely misplaced.

Instead, we focus on the first approximately balanced cut defined

by an eigenvector of P . Let k ≥ 2 be smallest such that the smaller

side of the cut defined by Sk = {i | xk,i < 0} (again, w.l.o.g. Sk
rather than its complement) satisfies |Sk | ≥ 1

2
|S∗ |. We let x =

x2,x ′ = xk and refer to (Sk , S̄k ) as the critical cut. We write di =∑
j pi, j . Our heuristic is guided by the standard characterization

λ2 = xL(P)xᵀ =
∑
x2

i −
∑
i,j xix j

pi, j√
didj

.

When i and j are on opposite sides of the Fiedler cut,
9
their signs

in x are opposite, making the term −xix j
pi, j√
didj

positive in xL(P)xᵀ.

This motivates scoring each edge (i, j) based on xix j as candidates
for removal (rounding pi, j down to 0) or addition (rounding pi, j
up to 1). However, the heuristic of rounding edges in such a way

suffers from two drawbacks:

(1) The degrees di and dj are affected when the edge (i, j) is
removed or added; the changes in the terms for edges (i ′, j)
or (i, j ′) could offset the rounding progress.

(2) The Fiedler vector (and other eigenvectors) may change

after removing or adding an edge (i, j), making it difficult to

compute a set of edges to remove or add one by one.

Ideally, after each small change to some pi, j , one should re-

compute the eigenbasis before continuing. This is computationally

expensive, so instead we adapt an idea of the NetMelt algorithm,

which was designed to identify good edge removals/additions to

decrease/increase the spectral gap of an adjacency matrix [11]. We

assign scores for each edge removal and edge addition. When work-

ing with the adjacency matrix, each edge removal/addition affects

only one entry of the perturbation matrix E. For the Laplacian ma-

trix, an edge removal or addition can change the spectrum also

through the changes in the nodes’ degrees (and thus the normaliza-

tion).

To help safeguard against the possibility of perturbing many

edges adjacent to the same node, thereby changing the degrees

drastically and misestimating additional rounding effects, we des-

ignate a budget b for how many edges can be removed; once the

budget has been exceeded, the Fiedler vector x , eigenvector x ′
, and

scores are recomputed. In addition, if the (fractional) number of

edges crossing the Fiedler cut is below 1, we stop the procedure.

To keep the overall edge density reasonably constant, we alternate

between edge removals (across the cut) and additions (on some side

of the cut).

The central part of the rounding algorithm is the following Criti-
cal Cut Rounding procedure. It is called repeatedly from the overall

rounding procedure (described further below), which handles spe-

cial cases such as “disconnected” probability matrices P and very

unbalanced Fiedler Cuts.

8
We found that this only happened on input graphs with spectral gap less than .01

and with sparse edge density (for example, the Euro Road graph).

9
The intuition behind the reasoning applies to x ′

as well, although the variational

characterization of λk is more complex.



(1) ComputeL(P), the Fiedler vectorx2, the spectral gap λ2(L(P)),
x ′

and λk (L(P)), and let δ = λk (L(P)) − λ∗k (L(P)) be the

amount by which we would like to decrease λk . If δ < c
(where c is a small constant) or the number of (fractional)

edges crossing the critical cut or the Fiedler cut is less than

1, exit the Critical Cut Rounding procedure.

(2) For all (i, j) with x ′ix
′
j < 0 (on opposite sides of the critical

cut), let the score be si, j = −
x ′
ix

′
jpi, j√
didj

≥ 0. All such edges

(i, j) are removal candidates; we consider them in order from

highest to lowest score.

(3) For all (i, j) with x ′ix
′
j > 0 (on the same side of the critical

cut), let the score be si, j =
x ′
ix

′
j (1−pi, j )√
didj

≥ 0. All such edges

(i, j) are addition candidates; we consider them in order from

highest to lowest score.

(4) Keep track of the following quantities: q is the sum of pi, j
for all edges (i, j) that have been rounded, s the sum of all

scores of alterations, and y the total change in entries in P
(where positive and negative changes cancel out). Initially,

all of q, s,y are 0.

(5) Untilq ≥ b or s ≥ δ/2, or all addition and removal candidates

have been processed:

• If y ≥ 0, consider the removal candidate (i, j) with largest

score si, j ; otherwise, consider the addition candidate (i, j)
with largest score si, j . (In either case, remove (i, j) from
the candidates for the future.)

• If s + si, j ≤ δ and (i, j) is not the last candidate edge

keeping the critical cut connected, update the values as

follows (otherwise, skip (i, j)):
– If (i, j)was a candidate for removal, then setpi, j = 0 and

y = y−pi, j ; otherwise, set pi, j = 1 andy = y+ (1−pi, j ).
– In both cases, update s = s + si, j and q = q + pi, j .

(6) If any changes were made to P , repeat from Step (1).

L(P) and the eigenvectors are computed only once for each over-

all iteration of the critical cut rounding procedure. An iteration

terminates once the approximate score s reaches δ/2, or the algo-

rithm has reached its budget b. At this point, the critical cut and
Fiedler cut are recomputed to check whether the algorithm has

indeed reached its goal of ensuring λ∗k ≤ λk ≤ λ∗k + c , and to adapt

should the cuts have changed. In our implementation, we use a

constant of c = .0001 and a budget b equal to
1

4
of the number

of edges crossing the critical cut. When the Critical Cut Round-

ing procedure terminates, either all edges across the critical cut

have been considered, or λk is a good approximation to the target:

λ∗k ≤ λk ≤ λ∗k + c .
While Critical Cut Rounding is the key component to our round-

ing approach, we need to take care of special cases: disconnected

template matrices P and extremely unbalanced Fiedler cuts. This is

accomplished by the following Cut Rounding procedure.

(1) Consider the graph with edges (i, j) iff pi, j > 0. If this graph

is disconnected, then permanently discard everything except

its largest connected component. For the remainder, consider

only the remaining nodes.

(2) Compute L(P), the Fiedler vector x2, and the spectral gap

λ2(L(P)). While the Fiedler cut is severely unbalanced (hav-

ing fewer than five vertices on the smaller side of the cut),

permanently discard the vertices on the smaller side, and

recompute L(P),x2, and λ2(L(P)). [•]
David

deleted

here

(3) If λ2(L(P))−λ
∗
2
(L(P))≥c and the number of (fractional) edges

crossing the Fiedler cut is at least 1, then perform Critical

Cut Rounding, as described above. If Critical Cut Rounding

made any changes to P , then repeat from Step (1). [•]
David

deleted

here

(4) While the (fractional) number of edges crossing the Fiedler

Cut is less than 1, round the largest fractional edge pi, j cross-
ing the Fiedler cut up to 1.

In our experiments, the largest fraction of nodes ever disconnected

was .5% (including nodes removed due to unbalanced Fiedler cuts).

When the Critical Cut Rounding procedure made the sum of

fractional edges crossing the Fiedler cut less than one, the graph

would be likely to become disconnected in the later independent

rounding step. To prevent this, the final step rounds the largest

fractional entry up to 1.

When there are remaining edges to round, we include them

in the independent rounding stage described next; this does not

change the expected density of edges across the critical cut.

We also experimented with using a dependent rounding scheme

[25] that includes each edge with probability pi, j , but correlates
the random choices so that the the number of edges crossing the

Fiedler cut exactly matches the expectation (up to fractional parts).

Experimentally, we found the performance of both approaches

comparable, so we did not include dependent rounding in our final

algorithm.

6.3 Independent Rounding
The final step is to include each remaining edge (i, j) independently
with probability pi, j , akin to the generation of G(n,p), SBM, or

Kronecker graphs. The following theorem by Chung and Radcliffe

bounds the resulting spectral perturbations.

Theorem 6.3 (Theorem 2 of [16]). Let G be a random graph,
generated by including each edge (i, j) independently with probability
pi, j . Let A be the adjacency matrix of the random graph, and δ =
mini

∑
j pi, j the minimum expected degree of any node. For every

ϵ > 0, there exists a constant k = k(ϵ) such that if δ > k lnn, then
with probability at least 1−ϵ , all eigenvalues of L(A) and L(P) satisfy

|λi (L(A)) − λi (L(P))| ≤ 3

√
3 ln(4n/ϵ )

δ .

7 EXPERIMENTAL EVALUATION
We evaluated our generative model (SpectralGen) against the Con-
figuration Model (Config.), Stochastic Block Model (SBM), and Kro-

necker graph model (Kronecker), based on many real-world data

sets, and using a number of metrics.

7.1 Data, Models, and Metrics
Data Sets. We report on results

10
from running on several stan-

dard network data sets, available for download from https://icon.

10
We also ran experiments on several other (smaller) network data sets from the Col-

orado repository: Political books, Football, High School dynamic contacts, Computer

Science Faculty Hiring, Physicians social network, Irvine student forum, Jazz. The

results were similar to those reported here.

https://icon.colorado.edu/#!/networks
https://icon.colorado.edu/#!/networks
https://icon.colorado.edu/#!/networks
https://icon.colorado.edu/#!/networks
https://icon.colorado.edu/#!/networks
https://icon.colorado.edu/#!/networks


colorado.edu/#!/networks, and https://tuvalu.santafe.edu/~simon/

styled-9/styled-10/. They are a network of flights between 500 com-

mercial airports in the US, weights representing the number of

seats (Airport), an email exchange network between members of a

university (Email), self-reported friendships between high school

students (Health), a road network made up of European cities and

roads (Euro Road), and links between Wikipedia pages on editorial

norms (Wiki). Even when the input network was directed (e.g.,

Wikipedia), we treated the edges as undirected. In addition to these

real-world networks, we include a grid graph in our evaluation to

test if our method can prevent generating an expander when the

target is far from one.

For all networks (input graphs and generated networks), we

focused on the the largest connected component rather than the en-

tire graph. This avoids difficulties in comparing spectra or assigning

arbitrary distances to disconnected pairs of nodes. We also removed

all self loops. The input graphs used and their basic parameters (of

the largest connected component) are summarized in Table 1.

Num Num Spectral Fiedler Cut

Vertices Edges Gap Conductance

Airport 500 2980 0.0274 0.0588

Email 1133 5452 0.1211 0.1617

Health 2535 10455 0.0379 0.0654

Euro Road 1039 1305 0.0005 0.0093

Grid 900 900 1740 0.0029 0.0299

Wiki 1872 15367 0.1295 0.5135

Table 1: Basic properties of the input graphs.

GenerativeModels. We generated networks using the following four

models. For the first three, we implemented the models ourselves

in MATLAB.

SpectralGen. Our own model, as described in Sections 3–6.
11

Config. The configuration model [5, 41], matching the input

degree sequence.

SBM. For the SBM [29], we used the Fiedler cut to find a high-

level bipartition, then fit the edge densities across this parti-

tion and within each set to the input graph. Without knowl-

edge of the number of clusters that best fit the SBM to the

ground truth graphs, we use two blocks, and choose the edge

densities so as to match the conductance across the Fiedler

cut in expectation.

Kronecker. The Kronecker model [36], fit and generated using

the Stanford Network Analysis Platform (SNAP) [38], to

generate a network of size 2
k
which is closest to n (the input

graph’s size). We used the default initial gradient descent

matrix and initiator matrix size and 100 gradient descent

iterations.

Evaluation Metrics. We compared the four models along multiple

network properties.

Spectrum. The difference between the spectra of the gener-

ated graphs and the spectrum of the input graph. Doing well

for this metric was the main goal of our work.

11
The code is online at https://github.com/alanadakotashine/spectral_generation.

Path Length Distribution. Distribution of lengths of short-

est paths from s to t for all vertex pairs (s, t).
Clustering Coefficient Distribution. Writing T (v) for the

number of triangles that v participates in, the clustering

coefficient ofv is
T (v)

dv (dv−1)
, the fraction of pairs of neighbors

of v that are neighbors of each other.

Betweenness Centrality Distribution. Letting σs,t denote
the number of shortest paths between s and t , and σs,t (v)
the number of shortest paths from s to t that pass through

v , the betweenness centrality of v is

∑
s,t,v

σs,t (v)
σs,t .

Degree Distribution. Frequency for each degree.

All graph properties were computed using the Python Networkx

library. For betweenness centrality, clustering coefficients, degree

distributions, and path length distributions, we evaluated how close

the distribution of the generated graph was to the distribution of the

input graph using the (one-dimensional) Earth Mover’s Distance

(EMD). EMD is a well-suited distance measure between distribu-

tions for our purpose because it increases when more probability

mass needs to be shifted, or it needs to be shifted larger distances.

For example, we want to consider graphs more similar if path dis-

tances are mostly off by 1 than when they are mostly off by 5.

To compare EMD results across different graph properties, we

normalized each distribution to the unit interval: more specifically,

when computing the EMD between two empirical distributions, we

normalized the elements in the supports of both distributions by

dividing them by the largest element in the union of their supports.

We compute the loss reductions (or increases) of our method as

∆ = (mean EMD BB −mean EMD SpecGen)/(mean EMD BB),

where “BB” is the best benchmark (having the smallest average

EMD).

7.2 Results
Figure 1 shows plots of the first 50 eigenvalues of the graphs gen-

erated according to the different models; we plot the average and

standard deviation for each eigenvalue across 20 runs. The eigen-

values tend to be tracked closer by our method than by the other

generative models.

Next, we report the mean and standard deviation EMD
12

of each

graph property discussed above for each generative model. These

data are reported in Table 2. The spectral generation approach

generally outperforms the benchmarks for shortest path lengths

and clustering coefficients; however, there are two exceptions.

Ourmethod does notmatch shortest path lengths on theWikipedia

graph well. This is likely due to the large discrepancy (.384) be-

tween the conductance across the Fiedler cut and the spectral gap

of the Wikipedia graph, since we observed similar behavior on

other graphs with this discrepancy. For graphs with such a large

discrepancy, using the density of the Fiedler cut as a stand-in for

the graph conductance is a poor approximation.

We included the grid graph in our evaluation, because it is ex-

plicitly not an expander, while most graph models tend to generate

expander graphs. Indeed, our method matches path lengths and

12
Statistics are taken over k = 20 runs for all graphs.

https://icon.colorado.edu/#!/networks
https://tuvalu.santafe.edu/~simon/styled-9/styled-10/
https://tuvalu.santafe.edu/~simon/styled-9/styled-10/
https://github.com/alanadakotashine/spectral_generation


Figure 1: Comparison of spectra. Input graph (black circles),
SpectralGen (blue squares), Config (green hexagons), SBM
(red triangles), Kronecker (purple stars).

betweenness centrality significantly better. It does not do well on

clustering coefficients, because it generates too many triangles.

The results are mixed on betweenness centrality. The EMDs

for betweenness centrality are smaller than the EMD for other

graph properties, which indicates that all methods, including ours,

track betweenness centrality reasonably well relative to other graph

properties.

The spectral generation approach does not match the degree

distribution as well as the configuration model. This is unsurprising

considering that the configuration model is designed explicitly

to match the degree distribution, making mistakes only when it

generates self-loops or multi-edges.

7.3 Evaluating Algorithm Components
Our approach utilizes multiple heuristics. To study the contribu-

tion of each heuristic to the final result, in Figure 2, we plot (for

two graphs) the spectra obtained by leaving out various steps. We

also compare the spectra against those of simple thresholding ap-

proaches as they seem to be utilized by [52]. In addition to the

spectra of the input graphs, we show the spectra of six matrices.

(1) The result of using the initial template matrix C from the

configuration model (with entries ci, j = didj/m), and ap-

plying our rounding procedure from Section 6, without first

applying LP (1). C is a reasonable candidate for rounding

because it matches the degrees of G∗
, and all its entries are

already in [0, 1].

(2) The template matrix output by the LP (1). This matrix may

have entries outside [0, 1].

(3) The matrix output by the LP (2), which forced entries from

the template inside [0, 1].

(4) The final rounded output using the Stiefel manifold opti-

mization along with the LP (1) for relaxed spectrum fitting.

(5) The final rounded output without using the Stiefel manifold

optimization, but only using the LP (1) for relaxed spectrum

fitting.

Shortest Paths
SpecGen Config Kronecker SBM ∆

Air. .02 ± .008 .03 ± .001 .04 ± .003 .02 ± .003 .12

Eml. .02 ± 4e-3 .03 ± 2e-3 .08 ± .01 .03 ± 2e-3 .4

Hlth. .03 ± 8e-3 .07 ± 3e-4 .04± 6e-3 .05 ± 5e-3 .29

Euro .14± .02 .15 ± 2e-3 .15 ± 7e-3 .17± .01 .07

Grid .2 ± 9e-3 .25± 2e-4 .25 ± 8e-4 .25 ± 2e-3 .17

Wiki .04 ± 3e-3 .01 ± 5e-4 .01 ± 3e-3 .03 ± 5e-4 -2.4

Clustering Coefficients
SpecGen Config Kronecker SBM ∆

Air. .31 ± .02 .39 ± .02 .48 ± .02 .59 ± .003 .25

Eml. .13 ± .03 .2 ± .002 .21 ± .002 .21 ± 7e-4 .53

Hlth. .09 ± .006 .14 ± 6e-4 .14 ± .002 .14± 5e-4 .55

Euro .01± 6e-3 .02± 2e-3 .02 ± .003 .02± 2e-3 .02

Grid .04 ± .01 .002± .001 .0001 ± 1e-4 .01 ± .001 -39

Wiki .25 ± .01 .27 ± .003 .3 ± .01 .37 ± 3e-4 .07

Betweenness Centralities
SpecGen Config Kronecker SBM ∆

Air. .01 ± 1e-3 8e-3 ± 4e-4 .01 ± 4e-4 .02 ± 5e-4 -.4

Eml. .01 ± 2e-3 7e-3 ± 3e-4 .02 ± 5e-3 .04 ± 6e-4 -.6

Hlth. 5e-3 ± 3e-3 .02 ± 9e-5 .04 ± .02 .03 ± 5e-4 .76

Euro .03± 4e-3 .04 ± 3e-4 .02 ± 2e-3 .03± 2e-3 -.6

Grid .09 ± .04 .34± 4e-4 .34 ± .02 .32 ± .04 .71

Wiki 2e-3 ± 7e-4 5e-3 ± 9e-4 4e-3 ± 2e-4 6e-3 ± 3e-3 .5

Degree Distribution
SpecGen Config Kronecker SBM ∆

Air. .02 ± 2e-3 .01 ± .08 .03 ± 1e-3 .07 ± 1e-3 -.2

Eml. 8e-3 ± 3e-3 2e-3± 2e-4 .07 ± 5e-4 .06 ± 8e-4 -2.8

Hlth. .01 ± 7e-3 8e-3 ± 2e-4 .14 ± 7e-3 .04 ± 9e-4 -.25

Euro .01± 3e-3 .002± 7e-4 .03 ± 3e-3 .05± 5e-3 -5.9

Grid .06 ± 8e-3 2e-3± 9e-4 .12 ± .01 .12 ± .01 -30.7

Wiki 4e-3 ± 5e-4 3e-3 ± 6e-5 7e-3 ± 2e-4 .03 ± 2e-4 -.4

Table 2: Models’ Performance for matching graph property
distributions and loss reduction.

(6) We derive the following random graph usingmethods similar

to [52]. We combine the spectrum of the target graph and

a uniformly random orthonormal matrix X to define the

Laplacian matrix L = XΛXᵀ
. A graph is produced by simple

thresholding: the edge (i, j) is included iff li, j < θ (recall that

a Laplacian matrix has negative off-diagonal entries for (i, j)
that correspond to edges), with the threshold θ chosen so

that the number of edges matches the target.

(7) Again in the spirit of [52], we consider a thresholding of our

template matrix M . In this case, we include all edges (i, j)
with mi, j > θ , again choosing θ such that the number of

edges matches the target.

Our experimental results show that the templatematrix spectrum

closely matches the desired spectrum; thus, the deviation in the final

spectrum is mostly a result of pushing the template matrix entries

into [0, 1], then rounding them. UsingC as a template and using our

rounding scheme normally suffices to produce strong performance

on the spectral gap, but fails to match the other eigenvalues. This

demonstrates that a careful choice in template helps preserve more

of the spectrum. Thresholding the Laplacian and adjacencymatrices



performs poorly not only on the overall spectrum, but even on the

spectral gap. This confirms that a more careful rounding procedure

and generation of a suitable template are necessary to generate

graphs matching a desired spectrum.

Figure 2: Spectra of matrices produced by employing dif-
ferent sets of heuristics. Input graph (black circles), round-
ing an unfitted matrix (green hexagons), fitted template
matrix (magenta plus), fractional graph (cyan triangles),
output graph without Stiefel (blue squares), output graph
with Stiefel (red stars), thresholding the Laplacian (yellow
pentagons), thresholding the adjacency matrix (purple oc-
tagons).

We observe that the Stiefel manifold optimization did not al-

ways improve performance of the final result, but more often than

not provided small improvements. However, for large graphs, the

computation becomes expensive.

8 CONCLUSION
We developed heuristics for randomly generating graphs whose

Laplacian spectra approximately match that of a given input graph.

Our experiments on multiple real-world network data sets show

that for other graph parameters of interest, too, the graphs gener-

ated in this way match their real-world counterpart as well as or

better compared to several widely used generative models.

Our work is nowhere near the final word on the subject, but

should instead be considered as an invitation to the community to

focus on spectral properties as an important criterion in random

graph generative models.

Among the most obvious directions for future work is to devise

faster heuristics. While our approach scales to graphs of several

thousand nodes, real-world networks of interest often have millions

of nodes; we would like to generate graphs of this size that match

global spectral properties of given networks.

A second natural direction is to derive sampling algorithms

with provable guarantees. The most obvious desirable guarantee

would be that the spectrum of the generated graphs be “close” to

Λ∗ provably, or alternatively, that the distribution of deviations can

be characterized. An even stronger type of guarantee would be to

show that the generated graphs be drawn (nearly) uniformly from

a suitable class of graphs with spectra similar to Λ∗
.

A (perhaps more likely) alternative would be to prove hardness

results. Paralleling the two tasks described in the previous para-

graph, hardness results could come in two varieties: (1) show that

deciding whether graphs exist whose Laplacian spectrum is close

to a given Λ∗
is hard, or (2) show that sampling nearly uniformly

from graphs with the desired Laplacian spectra is hard.

The motivation for our work was that the spectrum naturally

characterizes global connectivity properties. However, it is not the

only graph metric to do so, and one could consider several others.

For example, an alternative approach would be to sample graphs G
such that for every partition (S, S̄) of the vertices, the conductance
(or expansion, or number of edges, or some other parameter) is

approximately the same as in G∗
. An obvious downside of this ap-

proach is that even to verify whetherG is similar toG∗
in this sense

requires inspecting exponentially many cuts instead of linearly

many eigenvalues, unless more efficient algorithms are designed.

Finally, the initial motivation for our work raises a very intrigu-

ing general direction.We implied (in Section 1) that even when local

properties (such as degree distributions, triangle counts, other mo-

tifs) of a graph are fixed, generating graphs under such constraints

still produces expander graphs with high probability
13
. Without

any qualifications, this claim is definitely false — for example, a

3-regular graph in which each node participates in 3 triangles must

be the union of disjoint 4-cliques, not an expander. However, under

a careful formalization, we believe that such a claim should hold

true, and it would be desirable to corroborate the intuition that

local motifs do not constrain global structure enough to prevent

most graphs from being expanders.
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